Cho tam giác ABC (AB<AC) có 3 góc nhọn nội tiếp đường tròn (O). Hai đường cao BE và CF cắt nhau tại H. Vẽ đường kính AD, HD cắt BC tại M.
1)Chúng minh: Tứ giác BFEC nội tiếp.
2)Chứng minh: M là trung điểm BC.
3)Chứng minh: Hai đường thẳng AB và EF vuông góc với nhau.
4)Vẽ HK vuông góc AM tại K. Chứng minh: MB2=MK.MA.
Bạn tự vẽ hình nhé. Mình tóm tắt cách giải:
1) Dễ thấy \(\widehat{BFC}=\widehat{BEC}=90^o\) nên tứ giác BFEC nội tiếp (2 đỉnh kề nhau cùng nhìn cạnh đối diện dưới 1 góc vuông)
2) Ta thấy \(\widehat{ABD}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow BD\perp AB\)
Lại có \(CH\perp AB\left(gt\right)\) nên \(BD//CH\)
Tương tự, ta dễ dàng chứng minh được \(CD//BH\)
Do đó tứ giác BHCD là hình bình hành \(\Rightarrow\) 2 đường chéo BC và DH cắt nhau tại trung điểm của mỗi đoạn.
Mà HD cắt BC tại M (gt) nên M là trung điểm của đoạn BC.
3) Sửa lại đề là \(AD\perp EF\) nhé
Kẻ tiếp tuyến Ax của (O) thuộc nửa mặt phẳng bờ OA chứa điểm B. Dễ thấy rằng \(\widehat{BAx}=\widehat{ACB}\) (góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn \(\stackrel\frown{AB}\))
Tứ giác BFEC nội tiếp (cmt) \(\Rightarrow\widehat{AFE}=\widehat{ACB}\) (góc ngoài tại 1 đỉnh bằng góc trong tại đỉnh đối diện)
Từ đó \(\widehat{BAx}=\widehat{AFE}\) dẫn đến \(Ax//EF\) (2 góc so le trong bằng nhau)
Mà \(Ax\perp OA\) (do Ax là tiếp tuyến tại A của (O))
\(\Rightarrow OA\perp EF\) hay \(AD\perp EF\) (đpcm)
4)