K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2021

Cu không phản ứng với H2SO4 loãng.

\(Fe + H_2SO_4 \to FeSO_4 + H_2\\ n_{Fe} = n_{H_2} = \dfrac{2,24}{22,4} = 0,1(mol)\\ \%m_{Fe} =\dfrac{0,1.56}{10}.100\% = 56\%\)

Đáp án B

14 tháng 4 2021

Giúp em bài 14 luôn được hem ạ :3

Câu 13:

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=48/10=4,8(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{6^2}{10}=3,6\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)

Xét ΔHAB vuông tại H có HM là đường cao

nên \(BM\cdot BA=BH^2\)

=>\(BM\cdot6=3,6^2\)

=>BM=2,16(cm)

Xét ΔHAC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\)

=>\(AN\cdot8=4,8^2\)

=>AN=2,88(cm)

ΔABN vuông tại A

=>\(AB^2+AN^2=BN^2\)

=>\(BN^2=2.88^2+6^2=44,2944\)

=>\(BN=\sqrt{44,2944}=\dfrac{6\sqrt{769}}{25}\left(cm\right)\)

Xét tứ giác AMHN có \(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

nên AMHN là hình chữ nhật

=>AH=MN=4,8(cm)

Xét ΔMBN có \(cosBMN=\dfrac{MB^2+MN^2-NB^2}{2\cdot MB\cdot MN}\)

\(=\dfrac{4,8^2+2,16^2-\dfrac{27684}{625}}{2\cdot4,8\cdot2,16}=\dfrac{-10368}{625}:\dfrac{2592}{125}=-\dfrac{4}{5}\)

=>\(sinBMN=\sqrt{1-\left(-\dfrac{4}{5}\right)^2}=\dfrac{3}{5}\)

Xét ΔBMN có \(\dfrac{NB}{sinBMN}=2R\)

=>\(2R=\dfrac{6\sqrt{769}}{25}:\dfrac{3}{5}=\dfrac{6\sqrt{769}}{25}\cdot\dfrac{5}{3}=\dfrac{2}{5}\sqrt{769}\)

=>\(R=\dfrac{\sqrt{769}}{5}\)

=>Chọn A

 

13:

\(=\dfrac{1}{sin\left(\dfrac{pi}{33}\right)}sin\left(\dfrac{pi}{33}\right)\cdot cos\left(\dfrac{pi}{33}\right)\cdot cos\left(\dfrac{2pi}{33}\right)\cdot cos\left(\dfrac{4pi}{33}\right)\cdot cos\left(\dfrac{8pi}{33}\right)\cdot cos\left(\dfrac{16pi}{33}\right)\)

\(=\dfrac{1}{sin\left(\dfrac{pi}{33}\right)}\cdot\dfrac{1}{2}\cdot sin\dfrac{2}{33}pi\cdot cos\left(\dfrac{2}{33}pi\right)cos\left(\dfrac{4}{33}pi\right)\cdot cos\left(\dfrac{8}{33}pi\right)\cdot cos\left(\dfrac{16}{33}pi\right)\)

\(=\dfrac{1}{sin\left(\dfrac{pi}{33}\right)}\cdot\dfrac{1}{2}\cdot sin\dfrac{2}{33}pi\cdot cos\left(\dfrac{2}{33}pi\right)cos\left(\dfrac{4}{33}pi\right)\cdot cos\left(\dfrac{8}{33}pi\right)\cdot cos\left(\dfrac{16}{33}pi\right)\)\(=\dfrac{1}{sin\left(\dfrac{pi}{33}\right)}\cdot\dfrac{1}{4}\cdot sin\dfrac{4}{33}pi\cdot cos\left(\dfrac{4}{33}pi\right)\cdot cos\left(\dfrac{8}{33}pi\right)\cdot cos\left(\dfrac{16}{33}pi\right)\)

\(=\dfrac{1}{sin\left(\dfrac{pi}{33}\right)}\cdot\dfrac{1}{8}\cdot sin\dfrac{8}{33}pi\cdot cos\left(\dfrac{8}{33}pi\right)\cdot cos\left(\dfrac{16}{33}pi\right)\)

\(=\dfrac{1}{sin\left(\dfrac{pi}{33}\right)}\cdot\dfrac{1}{16}\cdot sin\dfrac{16}{33}pi\cdot cos\left(\dfrac{16}{33}pi\right)\)

\(=\dfrac{1}{sin\left(\dfrac{pi}{3}\right)}\cdot\dfrac{1}{32}\cdot sin\dfrac{32}{33}pi\)

=1/32

10:

\(=\dfrac{1}{2}\left[cos100+cos60\right]+\dfrac{1}{2}\cdot\left[cos100+cos20\right]\)

=cos100+1/2*cos20+1/4

6:

sin6*cos12*cos24*cos48

=1/cos6*cos6*sin6*cos12*cos24*cos48

=1/cos6*1/2*sin12*cos12*cos24*cos48
=1/cos6*1/4*sin24*cos24*cos48

=1/cos6*1/8*sin48*cos48

=1/cos6*1/16*sin96

=1/16

 

8 tháng 1 2024

A = \(\dfrac{x+13}{x+2}\)  (đk \(x\) ≠ -2)

Em cần làm gì với biểu thức này?

21 tháng 3 2022

câu 8.D

câu 13.C

câu 15.C

câu 16 ko biết

câu 17.A

câu 20.D

20 tháng 12 2022

13.A

14.B

15.A

20 tháng 12 2022

13, A
14, C
15, A

AH
Akai Haruma
Giáo viên
16 tháng 12 2023

Lời giải:

$y=ax+b$ đi qua điểm $A(2;-1)$ khi: $y_A=ax_A+b$

$\Leftrightarrow -1=2a+b(1)$

Gọi $I$ là giao điểm của $y=ax+b$ và $y=2x-4$. Vì $I\in Oy$ nên $x_I=0$

$I\in (y=2x-4)$ nên $y_I=2x_I-4=2.0-4=-4$

Vậy $I$ có tọa độ $(0;-4)$

$I\in (y=ax+b)$ nên: $y_I=ax_I+b$

$\Leftrightarrow -4=a.0+b\Rightarrow b=-4(2)$

Từ $(1); (2)\Rightarrow b=-4; a=\frac{3}{2}$