chứng minh rằng mọi số tự nhiên n lớn hơn 6 đều biểu diễn được dưới dạng tông hai số nguyên tố cùng nhau lớn hơn 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xin loi minh ko biet
xin loi minh ko biet
xin loi minh ko biet
n là số tự nhiên lớn hơn 6 nên n có thể có các dạng sau:
+) Với n = 6k + 1 (k $\in$∈ N*)
=> n = 3k + (3k + 1)
3k; 3k + 1 là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau
+) Với n = 6k + 3 (k $\in$∈ N*)
Viết n = (3k +1) + (3k +2)
mà (3k +1); (3k+2) là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau
+) Tương tự với n = 6k + 5 (k $\in$∈ N*)
Viết n = (3k+2) + (3k +3)
mà 3k + 2 và 3k + 3 nguyên tố cùng nhau
+) Với n = 6k + 2 (k $\in$∈ N*)
Viết n = (6k -1) + 3
Gọi d = ƯCLN (6k - 1; 3)
=> 6k - 1 chia hết cho d;
3 chia hết cho d => 3. 2k = 6k chia hết cho d
=> 6k - (6k -1) = 1 chia hết cho d => d = 1
do đó, 6k - 1 và 3 nguyên tố cùng nhau
+) Với n = 6k + 4 (k )
Viết n = ( 6k + 1 ) + 3
Dễ có : 6k + 1 và ba nguyên tố cùng nhau
Cai link nay se giup ich cho cau!
http://olm.vn/hoi-dap/question/94431.html
n là số tự nhiên lớn hơn 6 nên n có thể có các dạng sau:
+) Với n = 6k + 1 (k ∈ N*)
=> n = 3k + (3k + 1)
3k; 3k + 1 là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau
+) Với n = 6k + 3 (k ∈ N*)
Viết n = (3k +1) + (3k +2)
mà (3k +1); (3k+2) là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau
+) Tương tự với n = 6k + 5 (k ∈ N*)
Viết n = (3k+2) + (3k +3)
mà 3k + 2 và 3k + 3 nguyên tố cùng nhau
+) Với n = 6k + 2 (k ∈ N*)
Viết n = (6k -1) + 3
Gọi d = ƯCLN (6k - 1; 3)
=> 6k - 1 chia hết cho d;
3 chia hết cho d => 3. 2k = 6k chia hết cho d
=> 6k - (6k -1) = 1 chia hết cho d => d = 1
do đó, 6k - 1 và 3 nguyên tố cùng nhau
+) Với n = 6k + 4 (k ∈ N*)
Viết n = (6k +1 ) + 3
Dễ có: 6k +1 và 3 nguyên tố cùng nhau
=> ĐPCM
n là số tự nhiên lớn hơn 6 nên n có thể có các dạng sau:
+) Với n = 6k + 1 (k $\in$∈ N*)
=> n = 3k + (3k + 1)
3k; 3k + 1 là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau
+) Với n = 6k + 3 (k $\in$∈ N*)
Viết n = (3k +1) + (3k +2)
mà (3k +1); (3k+2) là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau
+) Tương tự với n = 6k + 5 (k $\in$∈ N*)
Viết n = (3k+2) + (3k +3)
mà 3k + 2 và 3k + 3 nguyên tố cùng nhau
+) Với n = 6k + 2 (k $\in$∈ N*)
Viết n = (6k -1) + 3
Gọi d = ƯCLN (6k - 1; 3)
=> 6k - 1 chia hết cho d;
3 chia hết cho d => 3. 2k = 6k chia hết cho d
=> 6k - (6k -1) = 1 chia hết cho d => d = 1
do đó, 6k - 1 và 3 nguyên tố cùng nhau
+) Với n = 6k + 4 (k $\in$∈ N*)
Viết n = (6k +1 ) + 3
Dễ có: 6k +1 và 3 nguyên tố cùng nhau
=> ĐPCM
Thế nào có bạn nào hay thầy cô OLM làm được chưa ? Có cần công bố đáp án không ?
n là số tự nhiên lớn hơn 6 nên n có thể có các dạng sau:
+) Với n = 6k + 1 (k \(\in\) N*)
=> n = 3k + (3k + 1)
3k; 3k + 1 là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau
+) Với n = 6k + 3 (k \(\in\) N*)
Viết n = (3k +1) + (3k +2)
mà (3k +1); (3k+2) là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau
+) Tương tự với n = 6k + 5 (k \(\in\) N*)
Viết n = (3k+2) + (3k +3)
mà 3k + 2 và 3k + 3 nguyên tố cùng nhau
+) Với n = 6k + 2 (k \(\in\) N*)
Viết n = (6k -1) + 3
Gọi d = ƯCLN (6k - 1; 3)
=> 6k - 1 chia hết cho d;
3 chia hết cho d => 3. 2k = 6k chia hết cho d
=> 6k - (6k -1) = 1 chia hết cho d => d = 1
do đó, 6k - 1 và 3 nguyên tố cùng nhau
+) Với n = 6k + 4 (k \(\in\) N*)
Viết n = (6k +1 ) + 3
Dễ có: 6k +1 và 3 nguyên tố cùng nhau
=> ĐPCM
ở câu hỏi tương tự Đinh Tuấn Việt câu hỏi của Clash Of Clans đã làm đúng rồi đó
Nhớ tick mình nha