cho a^2+b^2+(a-b)^2=c^2+d^2+(c-d)^2.chung minh a^4+b^4+(a-b)^4=c^4+d^4+(c-d)^4
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
HT
0
KM
0
PM
0
NM
0
14 tháng 12 2017
Ta có: a2+b2+(a-b)2=c2+d2+(c-d)2
=> [a2+b2+(a-b)2]2=[c2+d2+(c-d)2]2
=>a4+b4+(a-b)4+2.[a2b2+a2.(a-b)2+b2.(a-b)2] = c4+d4+(c-d)4+2.[c2d2+c2.(c-d)2+d2.(c-d)2]
=> a4+b4+(a-b)4+2.[a2b2+(a-b)2.(a2+b2)] = c4+d4+(c-d)4+2.[c2d2+(c-d)2.(c2+d2)] (1)
Mặt khác a2+b2+(a-b)2=c2+d2+(c-d)2
=> 2.(a2+b2-ab)=2.(c2+d2-cd)
=> a2+b2-ab=c2+d2-cd
=> (a2+b2-ab)2=(c2+d2-cd)2
=> (a2+b2)2-2ab.(a2+b2)+a2b2= (c2+d2)2-2cd(c2+d2)+c2d2
=> a2b2+(a2+b2)(a2+b2-2ab)= c2d2+(c2+d2)(c2+d2-2cd)
=> a2b2+(a2+b2)(a+b)2=c2d2+(c2+d2)(c-d)2 (2)
Lấy (1) trừ (2) vế với vế ta được:
a4+b4+(a-b)4=c4+d4+(c-d)4
=> đpcm