Cho a,b,c,d khác 0 thoả b2= ac CMR
\(\frac{a}{c}=\frac{\left(a+2012b\right)^2}{\left(b+2012a\right)^2} \)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HD giải, Bài này còn một cách khác là xài bunhia ._. cơ mà rối lắm. :)))
\(\sqrt{2012a+\frac{\left(b-c\right)^2}{2}}=\sqrt{2a\left(a+b+c\right)+\frac{\left(b-c\right)^2}{2}}\)
\(=\sqrt{\frac{4a^2+4ab+4ac+b^2+c^2-2bc}{2}}=\sqrt{\frac{\left(2a+b+c\right)^2-4bc}{2}}\le\sqrt{\frac{\left(2a+b+c\right)^2}{2}}=\frac{1}{\sqrt{2}}\left(2a+b+c\right)\)
Tương tự:
\(\sqrt{2012b+\frac{\left(c-a\right)^2}{2}}\le\frac{1}{\sqrt{2}}\left(a+2b+c\right)\) ; \(\sqrt{2012c+\frac{\left(a-b\right)^2}{2}}\le\frac{1}{\sqrt{2}}\left(a+b+2c\right)\)
Cộng vế với vế:
\(VT\le\frac{1}{\sqrt{2}}\left(4a+4b+4c\right)=2\sqrt{2}\left(a+b+c\right)=2012\sqrt{2}\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(1006;0;0\right)\) và hoán vị
Em ghi vội nó hơi sai
\(\sqrt{2012a+\frac{\left(b-c\right)^2}{2}}+\sqrt{2012b+\frac{\left(c-a\right)^2}{2}}+\sqrt{2012c+\frac{\left(a-b\right)^2}{2}}\le2012\sqrt{2}\)
Ta có: b2=ac\(\Rightarrow\frac{b}{c}=\frac{a}{b}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{2016.b}{2016.c}\)(1)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{2016.b}{2016.c}=\frac{a+2016.b}{b+2016.c}\)(2)
Từ (1) và (2) ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{a+2016.b}{b+2016.c}\)
\(\Rightarrow\frac{\left(a+2016.b\right)^2}{\left(b+2016.c\right)^2}=\frac{a^2}{b^2}=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}\)(vì \(\frac{a}{b}=\frac{b}{c}\))\(=\frac{a}{c}\)(điều phải chứng minh)
Câu hỏi của Lê Thị Trà MI - Toán lớp 7 - Học toán với OnlineMath Bạn xem bài làm tương tự ở link này nhé!
em gửi bài qua fb thầy dh giải giúp cho, tìm fb của thầy qua sđt: 0975705122. Thầy Thành
baifnayf giải sao? mình đang tìm mà thấy thầy trả lời thế này thì chịu. ai giải giúp với
Cho a,b,c,d khác 0 thoả b2= ac CMR
\(\frac{a}{c}\) =\(\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}\)