K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

Gọi VT là P

Ta có:

\(\sqrt{2012a+\dfrac{\left(b-c\right)^2}{2}}=\sqrt{2a\left(a+b+c\right)+\dfrac{\left(b-c\right)^2}{2}}=\sqrt{\dfrac{\left(2a+b+c\right)^2-4bc}{2}}\le\dfrac{2a+b+c}{\sqrt{2}}\left(1\right)\)

Tương tự ta có:

\(\left\{{}\begin{matrix}\sqrt{2012b+\dfrac{\left(c-a\right)^2}{2}}\le\dfrac{2b+c+a}{\sqrt{2}}\left(2\right)\\\sqrt{2012c+\dfrac{\left(a-b\right)^2}{2}}\le\dfrac{2c+a+b}{\sqrt{2}}\left(3\right)\end{matrix}\right.\)

Cộng (1), (2), (3) vế theo vế ta được

\(P\le\dfrac{2a+b+c}{\sqrt{2}}+\dfrac{2b+c+a}{\sqrt{2}}+\dfrac{2c+a+b}{\sqrt{2}}\)

\(=\dfrac{4}{\sqrt{2}}\left(a+b+c\right)=2012\sqrt{2}\)

Dấu = xảy ra khi \(\left(a,b,c\right)=\left(1006,0,0;0,1006,0;0,0,1006\right)\)

đề kiểu gì vậy

15 tháng 8 2017

Em ghi vội nó hơi sai

\(\sqrt{2012a+\frac{\left(b-c\right)^2}{2}}+\sqrt{2012b+\frac{\left(c-a\right)^2}{2}}+\sqrt{2012c+\frac{\left(a-b\right)^2}{2}}\le2012\sqrt{2}\)

16 tháng 2 2016

tui lớp lớp 6 not làm được HA HA HA!!!

1 tháng 6 2023

Ta có \(\sqrt{2022a+\dfrac{\left(b-c\right)^2}{2}}\) 

\(=\sqrt{2a\left(a+b+c\right)+\dfrac{b^2-2bc+c^2}{2}}\)

\(=\sqrt{\dfrac{4a^2+b^2+c^2+4ab+4ac-2bc}{2}}\)

\(=\sqrt{\dfrac{\left(2a+b+c\right)^2-4bc}{2}}\)

\(\le\sqrt{\dfrac{\left(2a+b+c\right)^2}{2}}\)

\(=\dfrac{2a+b+c}{\sqrt{2}}\).

Vậy \(\sqrt{2022a+\dfrac{\left(b-c\right)^2}{2}}\le\dfrac{2a+b+c}{\sqrt{2}}\). Lập 2 BĐT tương tự rồi cộng vế, ta được \(VT\le\dfrac{2a+b+c+2b+c+a+2c+a+b}{\sqrt{2}}\)

\(=\dfrac{4\left(a+b+c\right)}{\sqrt{2}}\) \(=\dfrac{4.1011}{\sqrt{2}}\) \(=2022\sqrt{2}\)

ĐTXR \(\Leftrightarrow\) \(\left\{{}\begin{matrix}ab=0\\bc=0\\ca=0\\a+b+c=1011\end{matrix}\right.\) \(\Leftrightarrow\left(a;b;c\right)=\left(1011;0;0\right)\) hoặc các hoán vị. Vậy ta có đpcm.

NV
17 tháng 5 2020

\(\sqrt{2012a+\frac{\left(b-c\right)^2}{2}}=\sqrt{2a\left(a+b+c\right)+\frac{\left(b-c\right)^2}{2}}\)

\(=\sqrt{\frac{4a^2+4ab+4ac+b^2+c^2-2bc}{2}}=\sqrt{\frac{\left(2a+b+c\right)^2-4bc}{2}}\le\sqrt{\frac{\left(2a+b+c\right)^2}{2}}=\frac{1}{\sqrt{2}}\left(2a+b+c\right)\)

Tương tự:

\(\sqrt{2012b+\frac{\left(c-a\right)^2}{2}}\le\frac{1}{\sqrt{2}}\left(a+2b+c\right)\) ; \(\sqrt{2012c+\frac{\left(a-b\right)^2}{2}}\le\frac{1}{\sqrt{2}}\left(a+b+2c\right)\)

Cộng vế với vế:

\(VT\le\frac{1}{\sqrt{2}}\left(4a+4b+4c\right)=2\sqrt{2}\left(a+b+c\right)=2012\sqrt{2}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(1006;0;0\right)\) và hoán vị

28 tháng 5 2022

Ta có : \(b=\dfrac{c+a}{2}\Rightarrow2b=c+a\Rightarrow a-b=b-c\)

Dó đó : \(P=\left(\dfrac{1}{\sqrt{a}+\sqrt{b}}+\dfrac{1}{\sqrt{b}+\sqrt{c}}\right)\left(\sqrt{a}+\sqrt{c}\right)\)

\(P=\left[\dfrac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}+\dfrac{\sqrt{b}-\sqrt{c}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}-\sqrt{c}\right)}\right]\left(\sqrt{a}+\sqrt{c}\right)\)

\(P=\left[\dfrac{\sqrt{a}-\sqrt{b}}{a-b}+\dfrac{\sqrt{b}-\sqrt{c}}{b-c}\right]\left(\sqrt{a}+\sqrt{c}\right)\)

\(P=\left[\dfrac{\sqrt{a}-\sqrt{b}}{b-c}+\dfrac{\sqrt{b}-\sqrt{c}}{b-c}\right]\left(\sqrt{a}+\sqrt{c}\right)\) Vì  \(\left(a-b=b-c\right)\)

 

\(P=\left[\dfrac{\sqrt{a}-\sqrt{b}+\sqrt{b}-\sqrt{c}}{b-c}\right]\left(\sqrt{a}+\sqrt{c}\right)\)

\(P=\dfrac{\sqrt{a}-\sqrt{c}}{b-c}\left(\sqrt{a}+\sqrt{c}\right)\)

\(P=\dfrac{a-c}{a-b}=\dfrac{a-c}{a-\dfrac{a+c}{2}}=\dfrac{a-c}{\dfrac{2a-a-c}{2}}=\dfrac{a-c}{\dfrac{a-c}{2}}=2\)