Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại E
a) Chứng minh góc BEC là góc tù
b) Biết góc B- góc C=\(10^o\). Tính góc AEB và góc BEC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác vuông ABE có
^ABE + ^AEB = 180 - ^BAE=180 - 90 = 90 => ^AEB < 90
Mà ^AEC=180=^AEB + ^BEC
=> ^BEC=180 - ^AEB >90 => ^BEC là góc tù
a) Xét tam giác ABE có:
\(\widehat{BAE}=90^0\)
\(\Rightarrow\widehat{BEA}< 90^0\)
Mà \(\widehat{BEA}+\widehat{BEC}=180^0\)(kề bù)
\(\Rightarrow\widehat{BEC}>90^0\)
=> \(\widehat{BEC}\) là góc tù
b) Ta có: \(\widehat{BEC}+\widehat{BEA}=180^0\)(kề bù)
\(\Rightarrow\widehat{BEA}=180^0-\widehat{BEC}=180^0-110^0=70^0\)
Xét tam giác ABE vuông tại A có:
\(\widehat{ABE}+\widehat{BEA}=90^0\)
\(\Rightarrow\widehat{ABE}=90^0-70^0\Rightarrow\dfrac{1}{2}\widehat{ABC}=20^0\)
\(\Rightarrow\widehat{ABC}=40^0\)
Xét tam giác ABC vuông tại A:
\(\widehat{ABC}+\widehat{ACB}=90^0\)
\(\Rightarrow\widehat{ACB}=90^0-\widehat{ABC}=90^0-40^0=50^0\)
VìBElả phân giác của ABC nên 81 = 82 = ạ
XétỏABC cózA+ABC+C= 180°
z>90°+ABC+C=1SO°
ABC+C=90° (1)
XétỏBEC có: 82 + BEC + C = 180°
=›Ẹ+BEC+C=1SOOQJ
Từ(1)và(2) => (Ệ+BEC+C) - (ABC+CJ = 180°-90°
=›BEG-Ệ=âũ°
=›BEczgo°+ạ>go°
Mà BEC< 180°
Do đó, BEC là góc tù (đpcm)
b)Ta có:B+ C = 90°(theo câu a)
Lạicó:C-B= 10°(gt)
Dễdảngtìm đượcB =40°:c = so°;ẳ =20° = 81 = 82
XétỏABECÓ:B1-l-A+AEB=18O°
z>20°+90°+AE8= 180°
110°+AE8= 180°
=>AEB= 180°-110°=ĩ0°
Ta có:AEB+ BEC = 180°(kề bù)
=>?0°+BEC= 180°
=>BEC= 180°-Ỉ0°= 110°
Ta có hình vẽ:
Vì BE là phân giác của ABC nên B1 = B2 = ABC2ABC2
Xét Δ ABC có: A + ABC + C = 180o
=> 90o + ABC + C = 180o
=> ABC + C = 90o (1)
Xét Δ BEC có: B2 + BEC + C = 180o
=> ABC2ABC2 + BEC + C = 180o (2)
Từ (1) và (2) => (ABC2+BEC+C)−(ABC+C)=180o−90o(ABC2+BEC+C)−(ABC+C)=180o−90o
⇒BEC−ABC2=90o⇒BEC−ABC2=90o
⇒BEC=90o+ABC2>90o⇒BEC=90o+ABC2>90o
Mà BEC < 180o
Do đó, BEC là góc tù (đpcm)
b) Ta có: B + C = 90o (theo câu a)
Lại có: C - B = 10o (gt)
Dễ dàng tìm được B = 40o; C = 50o; B2=20oB2=20o = B1 = B2
=> 20o + 90o + AEB = 180o
=> 110o + AEB = 180o
=> AEB = 180o - 110o = 70o
=> 70o + BEC = 180o
=> BEC = 180o - 70o = 110o
+ Ta có BEC = A+ ABE ( góc ngoài của tam giác ABE)
= 90 + ABE > 90 => BEC là góc tù nhé.
+ ABC vuông tại A => A+B+C =180 => B+C = 90 mà B-C =10
=> B=50; C =40
=> ABE = 1/2 B =50/2 =25
Tam giác ABE : A+ ABE + AEB =180 => AEB+ ABE =90 => AEB = 90 - 25 =65
+ mặt khác+ BEC+ AEB =180 kề bù
=> BEC = 180 - 65 =115
a.TG ABC cân tại A gt
=> ^B = ^C tính chất tg cân
Mà ^ECB=^ACE=1/2^C ( CE là pg ^C)
^DBC=^ABD=1/2^B ( BD là pg ^B)
=> ^ECB=^ACE =^DBC=^ABD
Xét tg BEC và tg CDB có:
^ECB = ^DBC(cmt)
BC chung
^B=^C (tg ABC cân tại A)
=>tg BEC = tg CDB(g-c-g)
b. Xét tg ABD và tg ACE có
^A chung
AB = AC (tg ABC cân tại A)
^ABD=^ACE(cmt)
=>tg ABD = tg ACE(g-c-g)
=>AD=AE (cctu)
=> tg ADE là tg cân