Bài 9:
Cho tam giác có số đo ba góc tỉ lệ với 2; 3; 4. Một học sinh nhận xét: “Tam giác trên là tam giác nhọn”. Theo em nhận xét đó đúng hay sai? Vì sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a,` Gọi số đo `3` góc của Tam giác `ABC` lần lượt là `x,y,z (x,y,z \ne 0)`
Tỉ lệ thức biểu diễn mối quan hệ giữa số đo `3` góc trong Tam giác `ABC` là `x/2=y/3=z/4`
`b,` Tổng số đo `3` góc trong `1` tam giác là `180^0`
`-> x+y+z=180`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/2=y/3=z/4=(x+y+z)/(2+3+4)=180/9=20`
`-> x/2=y/3=z/4=20`
`->x=20*2=40, y=20*3=60, z=20*4=80`
Vậy, số đo của `3` góc trong Tam giác `ABC` lần lượt là `40^0, 60^0, 80^0.`
a:
Đặt \(a=\widehat{A};b=\widehat{B};c=\widehat{C}\)
a/2=b/3=c/4
b: a/2=b/3=c/4=(a+b+c)/(2+3+4)=180/9=20
=>a=40; b=60; c=80
Tam giác ABC có số đo các góc là \widehat{A}A , \widehat{B}B , \widehat{C}C lần lượt tỉ lệ với 2 ; 3 ; 4. Tính số đo các góc của \DeltaΔABC.
gọi góc A,B,C lần lượt là x,y,z
theo bài ra ta có x/1=y/2=z/3 và x+y+z=180
x/1=y/2=z/3=x+y+z/1+2+3=180/6=30
x=30
y=60
z=90
tick cho mình nha
GỌI ba góc của tam giác lần lượt là a, b,c
theo bài ra ta có \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\) Và a + b +c = 180 độ (vì tổng ba góc = 180 độ)
Theo dãy tỉ số bằng nhau:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{180}{15}=12\)
=> a = 3. 12 = 36 độ
=> b = 12 . 5 = 60 độ
=> c = 12.7 = 84 độ
Ta có A,B,C tỉ lệ với 1,2,3
==>A/1=B/2=C/3
==> A+B+C/1+2+3=180ĐỘ/6=30 ĐỘ
\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}=\dfrac{180^0}{15}=12^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=36^0\\\widehat{B}=60^0\\\widehat{C}=84^0\end{matrix}\right.\)