K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2016

1) M = \(x^2+y^2-xy-x+y+1\)=\(x\left(x-y\right)-\left(x-y\right)+\left(y^2-1\right)\)=\(\left(x-1\right)\left(x-y\right)+\left(y^2-1\right)\)

Vậy Mmin =\(\left(y^2+1\right)\)khi \(x-1=0\)hoặc \(x-y=0\)

                                        =>     \(x=1\)            =>\(x=y\)

Mình chỉ có thể giúp bạn câu 1 thôi

                                                                                                                                                                                                   

20 tháng 7 2018

a) 1/2(x3+8)=1/2(x+2)(x2-2x+4)

b) x4(x-y)+2x3(x-y)=x3(x+2)(x-y)

c) x2-(y2-6y+9)=x2-(y-3)2=(x-y+3)(x+y-3)

d) xy(x3+y3)=xy(x+y)(x2-xy+y2)

e)3x2(x2-25y2)=3x2(x-5y)(x+5y)

f) 4x4+4x2y2+y4-4x2y2= (2x2+y2)2-(2xy)2=(2x2-2xy+y2)(2x2+2xy+y2)

20 tháng 7 2018

a) \(\frac{1}{2}x^3+4=\frac{1}{2}\left(x^3+8\right)=\frac{1}{2}\left(x+2\right)\left(x^2-2x+4\right)\)

b) \(x^5-x^4y+2x^4-2x^3y=x^3\left(x^2-xy+2x-2y\right)=x^3\left[x\left(x-y\right)+2\left(x-y\right)\right]=x^2\left(x-y\right)\left(x+2\right)\)

c) \(x^2-y^2+6y-9=x^2-\left(y-3\right)^2=\left(x+y-3\right)\left(x-y+3\right)\)

d) \(x^4y+xy^4=xy\left(x^3+y^3\right)=xy\left(x+y\right)\left(x^2-xy+y^2\right)\)

e) \(3x^4-75x^2y^2=3x^2\left(x^2-25y^2\right)=3x^2\left(x+5y\right)\left(x-5y\right)\).

f) \(4x^4+y^4=\left(2x^2+y^2\right)^2-\left(2xy\right)^2=\left(2x^2+y^2+2xy\right)\left(2x^2-y^2-2xy\right)\)

23 tháng 12 2019

a) \(A=5x\left(4x^2-2x+1\right)-2x\left(10x^2-5x-2\right)\)

\(A=20x^3-10x^2+5x-20x^3+10x^2+4x\)

\(A=9x\)

Thay x = 15 vào, ta có: 

\(A=9.15=135\)

b) \(B=5x\left(x-4y\right)-4y\left(y-5x\right)\)

\(B=5x^2-20xy-4y^2+20xy\)

\(B=5x^2-4y\)

Thay \(x=-\frac{1}{5};y=-\frac{1}{2}\) vào, ta có: 

\(B=5.\left(-\frac{1}{5}\right)^2-4.\left(-\frac{1}{2}\right)=\frac{11}{5}\)

c) \(C=6xy\left(xy-y^2\right)-8x^2\left(x-y^2\right)-5y^2\left(x^2-xy\right)\)

\(C=6x^2y^2-6xy^3-8x^3+8x^2y^2-5x^2y^2+5xy^3\)

\(C=9x^2y^2-xy^3-8x^3\)

Thay \(x=\frac{1}{2};y=2\) vào, ta có:

\(C=9.\left(\frac{1}{2}\right)^2.2^2-\frac{1}{2}.2^3-8.\left(\frac{1}{2}\right)^3=4\)

d) \(D=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\)

\(D=6x^2-3x+10x-5+12x^2+8x-3x-2\)

\(D=18x^2+12x-7\)

Ta có: \(\left|2\right|=\orbr{\begin{cases}x=-2\\x=2\end{cases}}\)

+) Với x = -2

\(D=18.\left(-2\right)^2+12.\left(-2\right)-7=41\)

+) Với x = 2

\(D=18.2^2+12.2-7=89\)

29 tháng 7 2016

\(\left(x+3\right).y=6\Rightarrow\left(x+3\right).y-6=0\)

\(\Rightarrow\hept{\begin{cases}x+3=0\\y-6=0\end{cases}\Rightarrow\hept{\begin{cases}x=-3\\y=6\end{cases}}}\)

\(\left(x+1\right).\left(y-2\right)=12\Rightarrow\left(x+1\right).\left(y-2\right)-12=0\)\(\Rightarrow\hept{\begin{cases}x+1=6\\y-2=2\end{cases}\Rightarrow\hept{\begin{cases}x=5\\y=4\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x+1=3\\y-2=4\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=6\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x+1=1\\y-2=12\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=14\end{cases}}}\)

29 tháng 7 2016

( x + 3 ) . y = 6

=>  ( x + 3 ) . y  = 1 . 6 = 6 . 1 = -1 . ( - 6 ) = -6 . ( -1 )

                          = 2 . 3 = 3 . 2 = - 2 . ( -3 ) = -3 . ( - 2 )

x + 316-1-623-2-3
y61-6-132-3-2
x-23-4-9-10-5-6
y61-6-132-3-2

Vậy các cặp ( x,y ) thỏa mãn là : ( -2 , 6 ) ; ( 3 , 1 ) ; ( -4 , -6 ) ; ( -9 , -1 ) ; ( -1 ,3 ) ; ( 0 , 2 ) ; ( -5 , -3 ) ; ( -6 , -2 )

25 tháng 8 2023

1)

xy + x - 4y = 12

x + y(x - 4) = 12

y(x - 4) = 12 - x

\(y=\dfrac{-x+12}{x-4}\)

Vì \(x,y\inℕ\) nên

\(\left(-x+12\right)⋮\left(x-4\right)\)

\(\left(-x+12\right)-\left(x-4\right)⋮\left(x-4\right)\)

\(16⋮\left(x-4\right)\)

\(\left(x-4\right)\inƯ\left(16\right)\)

\(\left(x-4\right)\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)

\(x\in\left\{5;3;6;2;8;0;12;-4;20;-12\right\}\)

\(y\in\left\{\dfrac{-5+12}{5-4};\dfrac{-3+12}{3-4};\dfrac{-6+12}{6-4};\dfrac{-2+12}{2-4};\dfrac{-8+12}{8-4};\dfrac{-0+12}{0-4};\dfrac{-12+12}{12-4};\dfrac{4+12}{-4-4};\dfrac{-20+12}{20-4};\dfrac{12+12}{-12-4}\right\}\)

\(y\in\left\{7;-9;3;-5;1;-3;0;-2;-\dfrac{1}{2};-\dfrac{7}{5}\right\}\)

\(\left(x;y\right)\in\left\{\left(5;7\right);\left(3;-9\right);\left(6;3\right);\left(2;-5\right);\left(8;1\right);\left(0;-3\right);\left(12;0\right);\left(-4;-2\right);\left(20;-\dfrac{1}{2}\right);\left(-12;-\dfrac{7}{5}\right)\right\}\)

Mà \(x,y\inℕ\) nên các giá trị cần tìm là \(\left(x;y\right)\in\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)

2)

(2x + 3)(y - 2) = 15

\(\left(2x+3\right)\inƯ\left(15\right)\)

\(\left(2x+3\right)\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)

Ta lập bảng

2x + 3 1 -1 3 -3 5 -5 15 -15
y - 2 15 -15 5 -5 3 -3 1 -1
(x; y) (-1; 17) (-2; -13) (0; 7) (-3; -3) (1; 5) (-4; -1) (6; 3) (-9; 1)

Mà \(x,y\inℕ\) nên các giá trị cần tìm là \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\)

24 tháng 8 2023

các thầy cô ơi giúp em vs ạ mai em phải nộp r ạ!!!

 

10 tháng 7 2018

\(A=\left(x+y\right).\left(x^2-xy+y^2\right)-\left(x-y\right).\left(x^2+xy+y^2\right)=\left(x^3+y^3\right)-\left(x^3-y^3\right)=2y^3\)

=> Biểu thức A phụ thuộc vào giá trị của y

10 tháng 7 2018

\(\left(x-1\right)^3+3x.\left(x-4\right)+1=0\Leftrightarrow x^3-3x^2+3x-1+3x^2-12x+1=0\)

\(\Leftrightarrow x^3-9x=0\Leftrightarrow x.\left(x^2-9\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm3\end{cases}}}\)