Giải PT: \(2x^2.\left(2x^2+3\right)=2-x^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự làm đk nhé
pt <=> \(2\left(x^2-2x-2\right)=3\sqrt{\left(x+3\right)\left(x^2-x+1\right)}\\ \)
Đặt a=x^2-x+1
b=x+3
pt<=> \(2\left(a-b\right)=3\sqrt{ab}\)
\(2a-2b-3\sqrt{ab}=0\)
\(\left(2a-4\sqrt{ab}\right)+\left(\sqrt{ab}-2b\right)=0\)
\(2\sqrt{a}\left(\sqrt{a}-2\sqrt{b}\right)+\sqrt{b}\left(\sqrt{a}-2\sqrt{b}\right)=0\)
\(\left(a-2\sqrt{b}\right)\left(2\sqrt{a}+\sqrt{b}\right)=0\)
tới đây bạn tự giải nhé
\(a.x^2+\dfrac{1}{x^2}=x+\dfrac{1}{x}\) ( ĐKXĐ : \(x\ne0\) )
\(\Leftrightarrow x^2+\dfrac{1}{x^2}-x-\dfrac{1}{x}=0\Leftrightarrow\left(x^2-\dfrac{1}{x}\right)+\left(\dfrac{1}{x^2}-x\right)=0\)
\(\Leftrightarrow-x\left(\dfrac{1}{x^2}-x\right)+\left(\dfrac{1}{x^2}-x\right)=0\Leftrightarrow\left(\dfrac{1}{x^2}-x\right)\left(1-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}1-x=0\\\dfrac{1}{x^2}-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\1-x^3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(1-x\right)\left(1+x+x^2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=1\end{matrix}\right.\Leftrightarrow x=1\) ( x2 + x + 1 loại nhé nếu phân tích ra thì ta được \(x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\in R\) )
Vậy \(S=\left\{1\right\}\)
b, \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)
\(\Leftrightarrow x\left(x+3\right).\left(x+1\right)\left(x+2\right)-24=0\)
\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)
\(\Leftrightarrow\left(x^2+3x+1-1\right)\left(x^2+3x+1+1\right)-24=0\)
\(\Leftrightarrow\left(x^2+3x+1\right)-1-24=0\Leftrightarrow\left(x^2+3x+1\right)-25=0\)
\(\Leftrightarrow\left(x^2+3x+1-5\right)\left(x^2+3x+1+5\right)=0\Leftrightarrow\left(x^2+3x-4\right)\left(x^2+3x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+3x-4=0\\x^2+3x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x+4\right)=0\\\left(x+\dfrac{3}{2}\right)^2+\dfrac{15}{4}\ge\dfrac{15}{4}\forall x\in R\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
Vậy \(S=\left\{-4;1\right\}\)
e, \(\left(x^2+x+1\right)-2x^2-2x=5\Leftrightarrow\left(x^2+x+1\right)-2x^2-2x-2-3=0\)
\(\Leftrightarrow\left(x^2+x+1\right)-2\left(x^2+x+1\right)-3=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+x-1\right)-3=0< =>\left(x^2+x\right)^2-4=0\)
\(\Leftrightarrow\left(x^2+x-2\right)\left(x^2+x+2\right)=0\)
\(\Leftrightarrow x^2+x-2=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\) ( x^2 + x + 2 loại nhé y như mấy câu trên luôn khác 0 ! )
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy \(S=\left\{-2;1\right\}\)
\(\left(x^2-3x+3\right)\left(x^2-2x+3\right)=2x^2\)
TH1 : \(x^2-3x+3=2x^2\Leftrightarrow-x^2-3x+3=0\)
\(\Delta=\left(-3\right)^2-4.\left(-1\right).3=9+15=21>0\)
Nên phương trình có 2 nghiệm phân biệt
\(x_1=\frac{3-\sqrt{21}}{2.\left(-1\right)}=\frac{3-\sqrt{21}}{-2}=\frac{-3-\sqrt{21}}{2}\)
\(x_2=\frac{3+\sqrt{21}}{2.\left(-1\right)}=\frac{3+\sqrt{21}}{-2}=\frac{-3+\sqrt{21}}{2}\)
TH2 : \(x^2-2x+3=2x^2\Leftrightarrow-x^2-2x+3=0\)
\(\Delta=\left(-2\right)^2-4.\left(-1\right).3=4+12=16>0\)
Nên phương trình có 2 nghiệm phân biệt
\(x_1=\frac{2-\sqrt{16}}{2.1}=\frac{2-4}{2}=-\frac{2}{2}=-1\)
\(x_2=\frac{2+\sqrt{16}}{2.1}=\frac{2+4}{2}=\frac{6}{2}=3\)
Thực hiện tiếp nha cj, cách này khá dài ...
Cách này nha.
\(\left(x^2-3x+3\right)\left(x^2-2x+3\right)=2x^2\)
\(x^4-5x^3+12x^2-15x+9=2x^3\)
\(x^4-5x^3+10x^2-15x+9=0\)
\(\left(x-1\right)\left(x^3-4x^2+6x-9\right)=0\)
TH1 : \(x-1=0\Leftrightarrow x=1\)
\(x^3-4x^2+6x-9=0\Leftrightarrow\left(x^2-x+3\right)\left(x-3\right)=0\)
TH2 : \(x-3=0\Leftrightarrow x=3\)
TH3 : \(x^2-x+3=0\)
\(\Delta=\left(-1\right)^2-4.1.3=1-12=-11< 0\)
Nên phuwong trình vô nghiệm
Vậy \(S=\left\{1;3\right\}\)
\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x+1\right)}=\dfrac{2x}{\left(x-3\right)\left(x+1\right)}\)
\(\Leftrightarrow x^2+x+x^2-3x=4x\)
\(\Leftrightarrow2x^2-6x=0\)
\(\Leftrightarrow2x\left(x-3\right)=0\)
=>x=0(nhận) hoặc x=3(loại)
đk : x khác -1 ; 3
\(\Rightarrow x\left(x+1\right)+x\left(x-3\right)=4x\Leftrightarrow2x^2-2x-4x=0\)
\(\Leftrightarrow2x^2-6x=0\Leftrightarrow2x\left(x-3\right)=0\Leftrightarrow x=0;x=3\left(ktm\right)\)
Ta có : \(\frac{2}{2x-6}+\frac{1}{x+2}+\frac{2.x}{\left(x+1\right).\left(3-x\right)}=0\)
ĐKXĐ : x \(\ne\)-1 ; x \(\ne\)-2 ; x \(\ne\)3
MTC : ( x + 1 ) . ( x+ 2 ) . ( x - 3 )
<=> ( x + 1 ) . ( x + 2 ) + ( x + 1 ) . ( x + 3 ) - 2.x. ( x + 2 ) = 0
<=> x2 + x + 2.x + 2 + x2 -3.x + x -3 - 2.x2 -4.x = 0
<=> -3.x = 1
<=> x = \(\frac{-1}{3}\)
Vậy S = { \(\frac{-1}{3}\)}
ĐKXĐ: x khác 3, x khác -1
\(\frac{2}{2x-6}+\frac{2}{2x+2}+\frac{2}{\left(x+1\right)\left(3-x\right)}=0\)
<=> \(\frac{-1}{3-x}+\frac{1}{x+1}+\frac{2}{\left(x+1\right)\left(3-x\right)}=0\)
<=> \(\frac{-x-1}{\left(3-x\right)\left(x+1\right)}+\frac{3-x}{\left(3-1\right)\left(x+1\right)}+\frac{2}{\left(x+1\right)\left(3-x\right)}=0\)
<=> \(\frac{-2x+4}{\left(3-x\right)\left(x+1\right)}=0\)
<=> -2x+4=0
<=>x=-2
vậy ....
\(2x^2\left(2x^2+3\right)=2-x^2\)
Đặt \(x^2=a;a\ge0\)
`->` pt trở thành:
`<=>2a(2a+3)=2-a`
`<=>4a^2+7a-2=0`
\(\Leftrightarrow\left[{}\begin{matrix}a=\dfrac{1}{4}\left(tm\right)\\a=-2\left(ktm\right)\end{matrix}\right.\)
`=>`\(x=\pm\sqrt{\dfrac{1}{4}}=\pm\dfrac{1}{2}\)
Vậy \(S=\left\{\pm\dfrac{1}{2}\right\}\)
\(\Leftrightarrow4x^4+6x^2-2+x^2=0\)
\(\Leftrightarrow4x^4+5x^2-2=0\)(1)
Đặt \(x^2=a\left(a>=0\right)\)
(1) trở thành \(4a^2+5a-2=0\)(2)
\(\text{Δ}=5^2-4\cdot4\cdot\left(-2\right)=25+32=57>0\)
Do đó: Phương trình (2) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}a_1=\dfrac{-5-\sqrt{57}}{8}\left(loại\right)\\a_2=\dfrac{-5+\sqrt{57}}{8}\left(nhận\right)\end{matrix}\right.\)
\(\Leftrightarrow x=\pm\sqrt{\dfrac{\sqrt{57}-5}{8}}\)