cho tam giác abc vuông tại a có đường cao AH . Giả sử C=30 độ . Tính B,HAC rồi cho nhận xét về hai góc này
VẼ HÌNH RA GIÙM MÌNH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : Â + B + C = 180 ( đ/lí )
90 + B + 30 = 180
B = 180 - ( 90 + 30 )
B = 60
Ta có AH vừa là đường cào cũng là đường phâN giác của góc Â
=> HÂC = 90 : 2 = 45 độ
Từ đó ta rút ra nhân xét : Đường cao của một gọc cũng vừa là tia phân giác của góc đó
a) ∆ABC có cạnh BC lớn nhất nên chân đường cao kẻ từ A phải nằm giữa B và C
=> HB + HC = BC
∆AHC vuông tại H => HC < AC
∆AHB vuông tại H => HB < AB
Cộng theo vế hai bất đẳng thức ta có:
HB + HC < AC + AB
Hay BC < AC + AB
b) BC là cạnh lớn nhất nên suy ra AB < BC và AC < BC
Do đó AB < BC + AC; AC < BC +AB
(cộng thêm AC hoặc AB vào vế phải của bất đẳng thức)
AB=21/(3+4)x3=9 cm
AC=21-9=12cm
Tự kẻ hình bạn nhé =)))
Áp dụng định lí Pitago vào tam giác ABC , có
AB^2+AC^2=BC^2
=>thay số vào, tính được BC=15cm
Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:
AB^2=BHxBC
=>BH=81/15=5.4cm
=>CH=15-5.4=9.6cm
AH^2=BHxCH=5.4x9.6=51.84cm