a. 2/3.(x+2)=1/5x
b. x/4 = -2/7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,6x-4=5x\\ \Leftrightarrow x-4=0\\ \Leftrightarrow x=4\\ b,\dfrac{2x+3}{3}=\dfrac{5-4x}{2}\\ \Leftrightarrow2\left(2x+3\right)=3\left(5-4x\right)\\ \Leftrightarrow4x+6=15-12x\\ \Leftrightarrow16x-9=0\\ \Leftrightarrow x=\dfrac{9}{16}\\ c,\left(x+7\right)\left(x-10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+7=0\\x-10=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-7\\x=10\end{matrix}\right.\)
d, ĐKXĐ:\(x\ne\pm3\)
\(\dfrac{2}{x-3}+\dfrac{3}{x+3}=\dfrac{3x+5}{x^2-9}\\ \Leftrightarrow\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{3\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{3x+5}{\left(x+3\right)\left(x-3\right)}=0\\ \Leftrightarrow\dfrac{2x+6+3x-9-3x-5}{\left(x+3\right)\left(x-3\right)}=0\\ \Rightarrow2x-8=0\\ \Leftrightarrow x=4\left(tm\right)\)
a.6x-4=5x <=> x=4
b.\(\dfrac{2x+3}{3}=\dfrac{5-4x}{2}\)
\(\Leftrightarrow\dfrac{2\left(2x+3\right)}{6}=\dfrac{3\left(5-4x\right)}{6}\)
\(\Leftrightarrow2\left(2x+3\right)=3\left(5-4x\right)\)
\(\Leftrightarrow4x+6=15-12x\)
\(\Leftrightarrow16x=11\)
\(\Leftrightarrow x=\dfrac{11}{16}\)
c.(x+7)(x-10)=0
\(\Leftrightarrow\left[{}\begin{matrix}x+7=0\\x-10=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=10\end{matrix}\right.\)
d.\(ĐK:x\ne\pm3\)
\(\Rightarrow\dfrac{2}{x-3}+\dfrac{3}{x+3}=\dfrac{3x+5}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\dfrac{2\left(x+3\right)+3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x+5}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow2\left(x+3\right)+3\left(x-3\right)=3x+5\)
\(\Leftrightarrow2x+6+3x-9-3x-5=0\)
\(\Leftrightarrow2x-8=0\)
\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=4\left(tm\right)\)
c: \(=\dfrac{\left(x-5\right)\left(x+5\right)}{3x+4}\cdot\dfrac{-5}{x-5}=\dfrac{-5\left(x+5\right)}{3x+4}\)
a) `x (3x - 5) - x^2 (x - 4) + x (x^2 - 7x) - 10 + 5x`
`= 3x2 - 5x - x3 + 4x2 + x3 - 7x2 - 10 + 5x`
`= (3x2 + 4x2 - 7x2) + (x3 - x3) + (5x - 5x) - 10`
`= -10`
Vậy giá trị của biểu thức không phụ thuộc vào giá trị của biến.
b) `(x + 1) (x2 + x + 1) - x2 (x + 2) - 2x + 5`
`= x3 + x2 + x + x2 + x + 1 - x^3 - 2x2 - 2x + 5`
`= (x^3 - x^3) + (x^2 + x^2 - 2x^2) + (x + x - 2x) + (1 + 5)`
`= 6`
Vậy giá trị của biểu thức không phụ thuộc vào giá trị của biến.
\(a,\Rightarrow8x^2-16x-4x+5-8x^2+10x-5x=0\\ \Rightarrow-15x=-5\Rightarrow x=\dfrac{1}{3}\\ b,\Rightarrow9x^2-16-9x^2+12x-4=5\\ \Rightarrow12x=25\\ \Rightarrow x=\dfrac{25}{12}\)
a,Bậc của của đa thức A(x) là 3
Hệ số cao nhất của đa thức A(x) là -2
Hệ số tự do của đa thức A(x) là 0
B(x)=-3x4+2x4+5
B(x)=-1x4+5
Bậc của đa thức B(x) là 4
Hệ số cao nhất của đa thức B(x) là -1
Hệ số tự do của đa thức B(x) là 5
b,\(A\left(x\right)-B\left(x\right)=\left(-2x^3+4x^2+5x\right)-\left(-x^4+5\right)\\ =-2x^3+4x^2+5x+x^4+5\)
\(1,\\ a,=x\left(2x+3y-5\right)\\ b,=x\left(x-2y\right)+\left(x-2y\right)=\left(x+1\right)\left(x-2y\right)\\ 2,\\ a,\Leftrightarrow x\left(x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\\ b,\Leftrightarrow x\left(x-2y\right)+\left(x-2y\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x-2y\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2y\left(y\in R\right)\end{matrix}\right.\)
\(a,=x\left(x+5\right)\\ b,=\left(y-1\right)^2-4x^2=\left(y-1-2x\right)\left(y-1+2x\right)\\ c,\text{Không phân tích đc}\)
a) \(x^{2}+5x=x(x+5)\)
b)\(y^{2}-4x^{2}-2y+1 = (y-1)^{2}-4x^{2}=(y-1-2x)(y-1+2x)\)
c)\(x^{2}-8x+16=(x-4)^{2}\)
\(a,=3\left(x-5\right)-x\left(x-5\right)=\left(3-x\right)\left(x-5\right)\\ b,=7\left(x^2-2xy+y^2\right)=7\left(x-y\right)^2\\ c,=\left(x^2+y^2-2xy\right)\left(x^2+y^2+2xy\right)=\left(x-y\right)^2\left(x+y\right)^2\\ d,=\left(y^2-6y+9\right)-25x^2=\left(y-3\right)^2-25x^2=\left(y-5x-3\right)\left(y+5x-3\right)\)
a. 2/3 . ( x + 2 ) = 1/5x
2/3x + 2/3 . 2 = 1/5x
2/3x + 4/3 = 1/5x
2/3x + 4/3 - 1/5x = 0
7/15x + 4/3 = 0
7/15x = -4/3
x = -4/3 . 7/15
x = -20/7
b. x/4 = -2/7
x = -2/7 . 4
x = -8/7.