K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 4 2021

15.

\(\Delta'=m^2+m-2>0\Leftrightarrow\left[{}\begin{matrix}m>1\\m< -2\end{matrix}\right.\)

Đáp án B

16.

\(\dfrac{\pi}{2}< a< \pi\Rightarrow\dfrac{\pi}{4}< \dfrac{a}{2}< \dfrac{\pi}{2}\Rightarrow\dfrac{\sqrt{2}}{2}< sin\dfrac{a}{2}< 1\Rightarrow\dfrac{1}{2}< sin^2\dfrac{a}{2}< 1\)

\(sina=\dfrac{3}{5}\Leftrightarrow sin^2a=\dfrac{9}{25}\Leftrightarrow4sin^2\dfrac{a}{2}.cos^2\dfrac{a}{2}=\dfrac{9}{25}\)

\(\Leftrightarrow sin^2\dfrac{a}{2}\left(1-sin^2\dfrac{a}{2}\right)=\dfrac{9}{100}\Leftrightarrow sin^4\dfrac{a}{2}-sin^2\dfrac{a}{2}+\dfrac{9}{100}=0\)

\(\Rightarrow\left[{}\begin{matrix}sin^2\dfrac{a}{2}=\dfrac{1}{10}< \dfrac{1}{2}\left(loại\right)\\sin^2\dfrac{a}{2}=\dfrac{9}{10}\end{matrix}\right.\)

\(\Rightarrow sin\dfrac{a}{2}=\dfrac{3\sqrt{10}}{10}\)

NV
12 tháng 4 2021

17.

Áp dụng công thức trung tuyến:

\(AM=\dfrac{\sqrt{2\left(AB^2+AC^2\right)-BC^2}}{2}=\dfrac{\sqrt{201}}{2}\)

18.

\(\Leftrightarrow x^2+2x+4>m^2+2m\) ; \(\forall x\in\left[-2;1\right]\)

\(\Leftrightarrow m^2+2m< \min\limits_{\left[-2;1\right]}\left(x^2+2x+4\right)\)

Xét \(f\left(x\right)=x^2+2x+4\) trên \(\left[-2;1\right]\)

\(-\dfrac{b}{2a}=-1\in\left[-2;1\right]\) ; \(f\left(-2\right)=4\) ; \(f\left(-1\right)=3\) ; \(f\left(1\right)=7\)

\(\Rightarrow\min\limits_{\left[-2;1\right]}\left(x^2+2x+4\right)=f\left(1\right)=3\)

\(\Rightarrow m^2+2m< 3\Leftrightarrow m^2+2m-3< 0\)

\(\Rightarrow-3< m< 1\Rightarrow m=\left\{-2;-1;0\right\}\)

Đáp án C

15 tháng 4 2021

11. 

\(tan\left(x-\pi\right)=-tan\left(\pi-x\right)=tanx\)

15 tháng 4 2021

12.

\(sinx+sin3x=2sin\dfrac{x+3x}{2}.cos\dfrac{x-3x}{2}=2sin2x.cos\left(-x\right)=2sin2x.cosx\)

8 tháng 4 2022

2.B (t/c của giới hạn)

6.B H/s ko x/đ với x = 0 -> Ko liên tục tại đ x = 0 

17.C

24. \(\lim\limits_{x\rightarrow\left(-1\right)^-}\dfrac{2x+1}{x+1}\)  . Thấy : \(\lim\limits_{x\rightarrow\left(-1\right)^-}2x+1=2.\left(-1\right)+1=-1\)

\(\lim\limits_{x\rightarrow\left(-1\right)^-}x+1=0\)  ; \(x\rightarrow\left(-1\right)^-\Rightarrow x+1< 0\).

Do đó : \(\lim\limits_{x\rightarrow\left(-1\right)^-}=+\infty\)  . Chọn B 

8 tháng 4 2022

33 . B 

Trên (SAB) ; Lấy H là TĐ của AB ; ta có : SH \(\perp AB\)  ( \(\Delta SAB\) đều ) ; HC \(\perp AB\) ( \(\Delta ABC\) đều ) 

Ta có : (SAB) \(\perp\left(ABC\right)\)  ; \(\left(SAB\right)\cap\left(ABC\right)=AB;SH\perp AB\)

\(\Rightarrow SH\perp\left(ABC\right)\)

\(SC\cap\left(ABC\right)=C\) . Suy ra : \(\left(SC;\left(ABC\right)\right)=\widehat{SCH}\)

Có : \(SH\perp HC\) => \(\Delta SHC\) vuông tại H 

G/s \(\Delta\)ABC đều có cạnh là a \(\Rightarrow AB=a\)

\(\Delta SAB\) đều => SA = SB = AB = a 

Tính được : \(SH=HC=\dfrac{\sqrt{3}}{2}a\)

\(\Delta SHC\) vuông tại H : \(tan\widehat{SCH}=\dfrac{SH}{HC}=1\)

\(\Rightarrow\widehat{SCH}=45^o\) => ... 

10 tháng 1 2021

Lấy phần cần lấy thôi nha, t hết giấy nháp rồi :)))

34:

(SBA) giao (SCD)=d đi qua S, d//AB//CD

=>d vuông góc SA,d vuông góc SD

=>(SAB;SCD)=(SA;SD)

tan ASD=AD/AS=1/căn 3

=>góc ASD=30 độ

NV
16 tháng 4 2021

17.

\(f\left(x\right)>0;\forall x\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=1>0\left(luôn-đúng\right)\\\Delta'=\left(2m-1\right)^2-\left(3m^2-2m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow m^2-2m-3< 0\)

\(\Leftrightarrow-1< m< 3\)

\(\Rightarrow m=\left\{0;1;2\right\}\)

18.

\(\pi< x< \dfrac{3\pi}{2}\Rightarrow cosx< 0\)

\(\Rightarrow cosx=-\sqrt{1-sin^2x}=-\dfrac{\sqrt{5}}{3}\)

\(\Rightarrow tanx=\dfrac{sinx}{cosx}=\dfrac{2\sqrt{5}}{5}\)

\(tan\left(x+\dfrac{\pi}{4}\right)=\dfrac{tanx+tan\dfrac{\pi}{4}}{1-tanx.tan\dfrac{\pi}{4}}=\dfrac{\dfrac{2\sqrt{5}}{5}+1}{1-\dfrac{2\sqrt{5}}{5}.1}=9+4\sqrt{5}\)

NV
16 tháng 4 2021

19.

\(a^2=b^2+c^2+bc\Rightarrow b^2+c^2-a^2=-bc\)

\(\Rightarrow cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{-bc}{2bc}=-\dfrac{1}{2}\)

\(\Rightarrow A=120^0\)

20.

Đường tròn (C) tâm \(I\left(2;-1\right)\) bán kính \(R=2\)

\(d\left(I;\Delta\right)=\dfrac{\left|2-1-3\right|}{\sqrt{1^2+1^2}}=\sqrt{2}\)

Gọi H là trung điểm AB \(\Rightarrow\left\{{}\begin{matrix}IH=d\left(I;\Delta\right)\\AH=\dfrac{1}{2}AB\end{matrix}\right.\)

Áp dụng định lý Pitago trong tam giác vuông IAH:

\(IA^2=IH^2+AH^2\Leftrightarrow R^2=IH^2+AH^2\)

\(\Rightarrow AH=\sqrt{2}\Rightarrow AB=2AH=2\sqrt{2}\)

1C

6D

18D

20A

24A

29A

35D

31B

29 tháng 4 2021

22/ \(\omega A=8\pi\)

\(A^2=x^2+\dfrac{v^2}{\omega^2}\Leftrightarrow A^2=3,2^2+\dfrac{\left(4,8\pi\right)^2}{\omega^2}\)

\(\Leftrightarrow\omega^2A^2=3,2^2\omega^2+23,04\pi^2\Leftrightarrow64\pi^2=3,2^2.\omega^2+23,04\pi^2\Leftrightarrow\omega=2\pi\left(rad/s\right)\)

\(\Rightarrow f=\dfrac{\omega}{2\pi}=\dfrac{2\pi}{2\pi}=1\left(Hz\right)\Rightarrow D.1Hz\)

23/ \(\omega A=20;\omega^2A=80\Rightarrow\left\{{}\begin{matrix}\omega=4\left(rad/s\right)\\A=5cm\end{matrix}\right.\)

\(\Rightarrow v=\omega\sqrt{A^2-x^2}=4.\sqrt{5^2-4^2}=12\left(cm/s\right)\Rightarrow A.12cm/s\)

20 tháng 10 2021
Là xem naruto