K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2022

Ta có : \(xyz=1\rightarrow\left\{{}\begin{matrix}xy=\dfrac{1}{z}\\xz=\dfrac{1}{y}\\yz=\dfrac{1}{x}\end{matrix}\right.\)

Do đó : \(A=\left(1+x\right)\left(1+y\right)\left(1+z\right)\)

\(A=1+x+y+z+xy+yz+xz+xyz\)

\(A=1+x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+1\)

\(A=\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)+\left(z+\dfrac{1}{z}\right)+2\)

Áp dụng BĐT \(a+b\ge2\sqrt{ab}\left(a,b>0\right)\) 

Dấu \(=\) xảy ra \(\Leftrightarrow a=b\)

với \(x,y,z>0\) Ta được :

\(A\ge2\sqrt{x.\dfrac{1}{x}}+2\sqrt{y.\dfrac{1}{y}}+2\sqrt{z.\dfrac{1}{z}}+2=2+2+2+2=8\)

Dấu \(=\) xảy ra \(\Leftrightarrow\)

\(\left\{{}\begin{matrix}x=\dfrac{1}{x}\\y=\dfrac{1}{y}\\z=\dfrac{1}{z}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2=1\\y^2=1\\z^2=1\end{matrix}\right.\Rightarrow x=y=z=1\) ( vì \(x,y,z>0\) )

 

22 tháng 3 2021

Sử dụng bất đẳng thức Cô si cho hai số dương ta được

    a+b\ge2\sqrt{ab}a+b≥2ab​    ;    b+c\ge2\sqrt{bc}b+c≥2bc​   ;   c+a\ge2\sqrt{ca}c+a≥2ca​

Nhân theo vế ba bất đẳng thức này ta được đpcm.

áp dụng bđt cô si ta được 

1+x ≥ 2x , 1+y ≥ 2y, 1+z ≥ 2z 

Nhân theo vế ba bất đẳng thức này ta được 

1+x)(1+y)(1+z)≥ \(8\sqrt{xyz}\) 

Sử dụng giả thiết   xyz=1 ta có đpcm. Đẳng thức xảy ra khi và chỉ khi  x=y=z.


 

14 tháng 12 2016

Nguyên trang bất đăng thức Bunhacoxki  rồi. 

3 tháng 9 2017

Cho abc=1 va a3>36.CMR:a23+b2+c2>ab+bc+ca}

Lời giải:

VT−VP=a24+b2+c2−ab−bc+2bc+a212=(a2−b−c)2+a2−36bc12>0⇒ đpcm

Cách khác:

Từ giả thiết suy ra a>0 và bc>0. Bất đẳng thức cần chứng minh tương đương với

a23+(b+c)2−3bc−a(b+c)≥0⟺13+(b+ca)2−b+ca−3a3≥0

Vì a3>36 nên

16 tháng 9 2018

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1^2}{x}+\frac{1^2}{y}+\frac{1^2}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)( Bất đẳng thức Svac-xơ )

Dấu = xảy ra khi \(\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\)

23 tháng 6 2020

BĐT trên 

\(< =>\frac{xy+yz+xz}{xyz}\ge\frac{9}{x+y+z}\)

\(< =>\left(x+y+z\right)\left(xy+yz+xz\right)\ge9xyz\)

Áp dụng BĐT cô si cho 3 số :

\(x+y+z\ge3\sqrt[3]{xyz}\)

\(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}\)

Nhân vế với vế : \(\left(x+y+z\right)\left(xy+yz+xz\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{x^2y^2z^2}=9xyz\)

Nên ta có đpcm

17 tháng 11 2019

Có: \(x+y+z\ge3\sqrt[3]{xyz}=3\)

\(x^2+y^2+z^2=\left(x^2+1\right)+\left(y^2+1\right)+\left(z^2+1\right)-3\ge2x+2y+2z-3\)

\(\ge x+y+z\left(qed\right)\)

Đẳng thức xảy ra khi x = y = z = 1

4 tháng 6 2023

Ta có \(27=xy+yz+zx\ge3\sqrt[3]{\left(xyz\right)^2}\) \(\Leftrightarrow9\ge\sqrt[3]{\left(xyz\right)^2}\) \(\Leftrightarrow729\ge\left(xyz\right)^2\) \(\Leftrightarrow27\ge xyz\) \(\Leftrightarrow27\left(xyz\right)^2\ge\left(xyz\right)^3\) \(\Leftrightarrow\sqrt{3}\sqrt[3]{xyz}\ge\sqrt{xyz}\) (lấy căn bậc 6 2 vế) \(\Leftrightarrow3\sqrt[3]{xyz}\ge\sqrt{3xyz}\)

Do đó \(x+y+z\ge3\sqrt[3]{xyz}\ge\sqrt{3xyz}\). ĐTXR \(\Leftrightarrow x=y=z=3\) 

19 tháng 11 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vế trái bằng vế phải nên đẳng thức được chứng minh.

Nếu a ≥ 0, b  ≥  0, c  ≥  0 thì :

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

2 tháng 9 2017

Cái này là BĐT Schwarz nha bạn

+) Áp dụng BĐT Cô - si cho 4 số dương x; x; y; z ta có:

x+x+y+z≥44√x.x.y.z

=> 2x + y + z ≥44√x.x.y.z                  (1)

Với 4 số dương 1x ;1x ;1y ;1z  ta có: 1x +1x +1y +1z ≥4.4√1x .1x .1y .1z     (2)

Từ (1)(2) => (2x+y+z)(1x +1x +1y +1z )≥4.4√x.x.y.z4.4√1x .1x .1y .1z =16

=> 12x+y+z ≤116 .(2x +1y +1z ) (*)

Tương tự, ta có: 1x+2y+z ≤116 .(1x +2y +1z )   (**)

1x+y+2z ≤116 .(1x +1y +2z )                           (***)

Từ (*)(**)(***) => Vế trái ≤116 (4x +4y +4z )=14 .(1x +1y +1z )=14 .4=1

=> đpcm