K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2022

giúp em với mng :(((((((((((((

 

DD
20 tháng 5 2022

\(P=\dfrac{2x+3}{3x+1}\) là số nguyên suy ra \(3P=\dfrac{6x+9}{3x+1}=\dfrac{6x+2+7}{3x+1}=2+\dfrac{7}{3x+1}\inℤ\)

\(\Leftrightarrow\dfrac{7}{3x+1}\inℤ\Rightarrow3x+1\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\) (vì \(x\) nguyên) 

\(\Leftrightarrow x\in\left\{0,2\right\}\) (vì \(x\) nguyên) 

Thử lại đều thỏa mãn. 

12 tháng 12 2021
. Dạng 1: Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên

+ Thông thường biểu thức A sẽ có dạng A = \frac{{f\left( x \right)}}{{g\left( x \right)}} trong đó f(x) và g(x) là các đa thức và g(x) ≠ 0

+ Cách làm:

- Bước 1: Tách về dạng A = m\left( x \right) + \frac{k}{{g\left( x \right)}} trong đó m(x) là một biểu thức nguyên khi x nguyên và k có giá trị là số nguyên

- Bước 2: Để A nhận giá trị nguyên thì \frac{k}{{g\left( x \right)}}nguyên hay k \vdots g\left( x \right) nghĩa là g(x) thuộc tập ước của k

- Bước 3: Lập bảng để tính các giá trị của x

- Bước 4: Kết hợp với điều kiện đề bài, loại bỏ những giá trị không phù hợp, sau đó kết luận bài toán

2. Dạng 2: Tìm giá trị của x để biểu thức A nhận giá trị nguyên

+ Đây là một dạng nâng cao hơn của dạng bài tập tìm gá trị nguyên của x để biểu thức A nhận giá trị nguyên bởi ta chưa xác định giá trị của biến x có nguyên hay không để biến đổi biểu thức A về dạng A = m\left( x \right) + \frac{k}{{g\left( x \right)}}. Bởi vậy, để làm được dạng bài tập này, chúng ta sẽ thực hiện các bước sau:

12 tháng 12 2021

\(Q=\dfrac{x+3-x+7}{2x+1}=\dfrac{10}{2x+1}\in Z\\ \Leftrightarrow2x+1\inƯ\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\\ \Leftrightarrow x\in\left\{-3;-1;0;2\right\}\left(x\in Z\right)\)

8 tháng 12 2021

a)B =  \(\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{7x+3}{9-x^2}\left(ĐK:x\ne\pm3\right)\)

\(\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}-\dfrac{7x+3}{x^2-9}\)

\(\dfrac{2x\left(x-3\right)+\left(x+1\right)\left(x+3\right)-7x-3}{\left(x+3\right)\left(x-3\right)}\)

\(\dfrac{3x^2-9x}{\left(x+3\right)\left(x-3\right)}=\dfrac{3x}{x+3}\)

b) \(\left|2x+1\right|=7< =>\left[{}\begin{matrix}2x+1=7< =>x=3\left(L\right)\\2x+1=-7< =>x=-4\left(C\right)\end{matrix}\right.\)

Thay x = -4 vào B, ta có:

B = \(\dfrac{-4.3}{-4+3}=12\)

c) Để B = \(\dfrac{-3}{5}\)

<=> \(\dfrac{3x}{x+3}=\dfrac{-3}{5}< =>\dfrac{3x}{x+3}+\dfrac{3}{5}=0\)

<=> \(\dfrac{15x+3x+9}{5\left(x+3\right)}=0< =>x=\dfrac{-1}{2}\left(TM\right)\)

d) Để B nguyên <=> \(\dfrac{3x}{x+3}\) nguyên

<=> \(3-\dfrac{9}{x+3}\) nguyên <=> \(9⋮x+3\)

x+3-9-3-1139
x-12(C)-6(C)-4(C)-2(C)0(C)6(C)

 

a: Để \(\dfrac{3x-2}{4}\) không nhỏ hơn \(\dfrac{3x+3}{6}\) thì \(\dfrac{3x-2}{4}>=\dfrac{3x+3}{6}\)

=>\(\dfrac{6\left(3x-2\right)}{24}>=\dfrac{4\left(3x+3\right)}{24}\)

=>18x-12>=12x+12

=>6x>=24

=>x>=4

b: Để \(\left(x+1\right)^2\) nhỏ hơn \(\left(x-1\right)^2\) thì \(\left(x+1\right)^2< \left(x-1\right)^2\)

=>\(x^2+2x+1< x^2-2x+1\)

=>4x<0

=>x<0

c: Để \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\) không lớn hơn \(\dfrac{x^2}{7}-\dfrac{2x-3}{5}\) thì

\(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}< =\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)

=>\(\dfrac{2x-3+5x\left(x-2\right)}{35}< =\dfrac{5x^2-7\cdot\left(2x-3\right)}{35}\)

=>\(2x-3+5x^2-10x< =5x^2-14x+21\)

=>-8x-3<=-14x+21

=>6x<=24

=>x<=4

NV
25 tháng 12 2020

\(P=\dfrac{\left(2x-3\right)\left(x+2\right)+6}{2x-3}=x+2+\dfrac{6}{2x-3}\)

\(P\in Z\Leftrightarrow\dfrac{6}{2x-3}\in Z\Leftrightarrow2x-3=Ư\left(6\right)\)

Để ý rằng \(2x-3\) lẻ với mọi x nguyên nên ta chỉ cần xét các ước lẻ của 6

\(\Rightarrow2x-3=\left\{-3;-1;1;3\right\}\)

\(\Rightarrow x=\left\{0;1;2;3\right\}\)

25 tháng 12 2020

mình cảm ơn bạn rất nhiều

 

AH
Akai Haruma
Giáo viên
2 tháng 1 2021

Lời giải:

Để $A$ nguyên thì \(x-3\vdots 2x+3\)

\(\Leftrightarrow 2(x-3)\vdots 2x+3\)

\(\Leftrightarrow 2x-6\vdots 2x+3\Leftrightarrow 2x+3-9\vdots 2x+3\)

\(\Leftrightarrow 9\vdots 2x+3\Rightarrow 2x+3\in\left\{\pm 1;\pm 3;\pm 9\right\}\)

\(\Rightarrow x\in \left\{-2; -1; 0; -3; -6; 3\right\}\)

a: ĐKXĐ: x<>-1

b: \(P=\left(1-\dfrac{x+1}{x^2-x+1}\right)\cdot\dfrac{x^2-x+1}{x+1}\)

\(=\dfrac{x^2-x+1-x-1}{x^2-x+1}\cdot\dfrac{x^2-x+1}{x+1}=\dfrac{x^2-2x}{x+1}\)

c: P=2

=>x^2-2x=2x+2

=>x^2-4x-2=0

=>\(x=2\pm\sqrt{6}\)

29 tháng 12 2021

a: \(A=\dfrac{x^2-2x+2x^2+4x-3x^2-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2}{x+2}\)

5 tháng 1 2023

a, \(\dfrac{x}{x+2}\) + \(\dfrac{2x}{x-2}\) -\(\dfrac{3x^2-4}{x^2-4}\)

\(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{x^2-4}\)

\(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{\left(x+2\right)\left(x-2\right)}\)

\(\dfrac{x\left(x-2\right)+2x\left(x+2\right)-3x^2-4}{\left(x+2\right)\left(x-2\right)}\)

\(\dfrac{2x-4}{\left(x+2\right)\left(x-2\right)}=\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{2}{x+2}\)

Có vài bước mình làm tắc á nha :>