K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2016

\(A=\left(x+3y-5\right)^2-6xy+27\)

\(=x^2+9y^2+25+6xy-30y-10x-6xy+27\)

\(=x^2-10x+25+9y^2-30y+25+2\)

\(=\left(x-5\right)^2+\left(3y-5\right)^2+2\)

\(\left(x-5\right)^2\ge0\)

\(\left(3y-5\right)^2\ge0\)

\(\left(x-5\right)^2+\left(3y-5\right)^2+2\ge2\)

\(MinA=2\Leftrightarrow x=5;y=\frac{5}{3}\)

6 tháng 11 2016

\(A=\left(x+3y-5\right)^2-6xy+27\)

\(=x^2+9y^2+25+6xy-10x-30y-6xy+27\)

\(=\left(x^2-10x+25\right)+\left(9y^2-30y+25\right)+2\)

\(=\left(x-5\right)^2+\left(3y-5\right)^2+2\ge2\)

Dấu = khi \(\begin{cases}\left(x-5\right)^2=0\\\left(3y-5\right)^2=0\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}x=5\\y=\frac{5}{3}\end{cases}\)

Vậy MinA=2 khi \(\begin{cases}x=5\\y=\frac{5}{3}\end{cases}\)

30 tháng 11 2021

x2-14x+9y2-42y+107

6 tháng 9 2016

Trả lời đc câu b chưa bạn

6 tháng 9 2016

nếu rồi cho mình lời giải nha

NV
28 tháng 8 2021

\(C=\dfrac{\left(x+y\right)^2-4xy}{xy}+\dfrac{6xy}{\left(x+y\right)^2}=\dfrac{\left(x+y\right)^2}{xy}+\dfrac{6xy}{\left(x+y\right)^2}-4\)

\(C=\dfrac{3\left(x+y\right)^2}{8xy}+\dfrac{6xy}{\left(x+y\right)^2}+\dfrac{5\left(x+y\right)^2}{8xy}-4\)

\(C\ge2\sqrt{\dfrac{18xy\left(x+y\right)^2}{8xy\left(x+y\right)^2}}+\dfrac{5.4xy}{8xy}-4=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(x=y\)

27 tháng 8 2016

Ta có:\(\left|-y-3\right|^9\ge0;\left(x-3y\right)^8\ge0\)

\(\Rightarrow C=-\left(-5^3\right)+\left|-y-3\right|^9+\left(x-3y\right)^8\ge-\left(-5^3\right)=125\)

Đẳng thức xảy ra khi: \(\left|-y-3\right|^9=0\Rightarrow-y-3=0\Rightarrow y=-3;\left(x-3y\right)^8=0\Rightarrow x-3y=0\Rightarrow x-3.\left(-3\right)=0\Rightarrow x=-9\)Vậy giá trị nhỏ nhất của C là 125 khi x = -9 và y = -3

14 tháng 8 2018

\(A=\left(x+3y-5\right)^2-6xy+26\)

\(=x^2+9y^2+25+6xy-10x-30y-6xy+26\)

\(=x^2-10x+25+9y^2-30y+25+1\)

\(=\left(x-5\right)^2+\left(3y-5\right)^2+1\)

Vì :

\(\left(x-5\right)^2\ge0\forall x\)

\(\left(3y-5\right)^2\ge0\forall y\)

\(\Rightarrow\left(x-5\right)^2+\left(3y-5\right)^2+1\ge1\)

Dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-5\right)^2=0\\\left(3y-5\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=5\\y=\frac{5}{3}\end{cases}}\)

Vậy \(A_{min}=1\) tại \(\hept{\begin{cases}x=5\\y=\frac{5}{3}\end{cases}}\)