Quãng đường AB dài 25km. Một người đi xe máy từ A đến B, sau khi nghỉ 20 phút ở B người đó quay lại A với vận tốc lớn hơn vận tốc lúc đi là 8 km/h. Kể từ lúc khởi hành đến khi về tới A hết tất cả là 3 giờ 40 phút. Tính vận tốc lúc đi. Mình đã lập luận nhưng tính sai phương trình liên tục, mình chỉ cần biết các bước giải phương trình bài này và kết quả.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
Đổi: \(30ph=\frac{1}{2}h\)
Gọi vận tốc xe máy lúc đi từ A đến B là: x ( km/h; x > 0 )
=> vận tốc xe máy lúc đi từ B về A là: x + 9 ( km/h )
thời gian xe máy đi từ A đến B là: \(\frac{90}{x}\)( giờ )
thời gian xe máy đi từ B về A là: \(\frac{90}{x+9}\)( giờ )
Theo bài ra, ta có:
\(\frac{90}{x}+\frac{90}{x+9}+\frac{1}{2}=5\)
\(\Leftrightarrow\frac{90}{x}+\frac{90}{x+9}=\frac{9}{2}\)
\(\Leftrightarrow\frac{90\left(x+9\right)}{x\left(x+9\right)}+\frac{90x}{x\left(x+9\right)}=\frac{9}{2}\)
\(\Leftrightarrow\frac{90x+810+90x}{x\left(x+9\right)}=\frac{9}{2}\)
\(\Leftrightarrow\frac{180x+810}{x\left(x+9\right)}=\frac{9}{2}\)
\(\Rightarrow2\left(180x+810\right)=9x\left(x+9\right)\)
\(\Leftrightarrow360x+1620=9x^2+81x\)
\(\Leftrightarrow9x^2+81x-360x-1620=0\)
\(\Leftrightarrow9x^2-279x-1620=0\)
\(\Leftrightarrow9\left(x^2-31x-180\right)=0\)
\(\Leftrightarrow x^2-31x-180=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=36\left(tm\right)\\x=-5\left(ktm\right)\end{cases}}\)
Vậy vận tốc xe máy lúc đi từ A đến B là: 36km/h.
Đặt ẩn x là vận tốc xe máy (x>0)
Lúc đầu đi vs x km/h thì lúc sau là x+9 km/h
Thời gian đi từ A -> B là 90/x thì thời gian từ B -> A là 90/x+9
Đến B còn nghỉ 30p=1/2h
Lập hệ phương trình thời gian:
(90/x)+1/2+(90/x+9)=5
<=> (90/x)+(90/x+9)=5-1/2
<=> (90.(x+9)+90.x)/x.(x+9)=9/2
<=> 90.x+810+90.x=(9/2).x.(x+9)
<=>180.x+810=(9/2)x^2+(81/2).x
<=> 0 = (9/2).x^2 - (279/2).x - 810
Gpt đc x=36 hoặc x=-5( loại vì ko thỏa mãn điều kiện)
\(30p=0,5h\)
Gọi \(x\left(km\right)\) là độ dài quãng đường AB \(\left(x>0\right)\)
Thời gian đi từ A đến B là: \(\dfrac{x}{36}\left(h\right)\)
Vận tốc đi từ B về A là: \(36+9=45\left(km/h\right)\)
Thời gian đi từ B về A là:\(\dfrac{x}{45}\left(h\right)\)
Vì tổng thời gian đi là 5h nên ta có pt:
\(\dfrac{x}{36}+0,5+\dfrac{x}{45}=5\\ \Leftrightarrow\dfrac{x}{36}+\dfrac{x}{45}=4,5\\ \Leftrightarrow\left(\dfrac{1}{36}+\dfrac{1}{45}\right)x=4,5\\ \Leftrightarrow x=\dfrac{4,5}{\dfrac{1}{36}+\dfrac{1}{45}}=90\left(tm\right)\)
Vậy quãng đường AB dài 90km
BÀI 4:Gọi đọ dài quãng đường AB là x(km)(x>0)
Khi đó: Thời gian để người đi xe đạp điện đi hết x km là\(\frac{x}{25}\)(h)
Thời gian để người đi xe máy đi hết x km là \(\frac{x}{40}\)(h)
Theo đb có phương trình sau: \(\frac{x}{25}\)- 1 -\(\frac{x}{40}\)= \(\frac{1}{2}\)
Giải phương trình ta đc x=100 (tmđk)
Vậy độ dài quãng đường là 100km
BÀI 5:Gọi độ dài quãng đường cũ từ A đến B là x(km)(x>0)
Khi đó: Thời gian để đi x km là:\(\frac{x}{28}\)(h)
Con đường mới từ B về A là: x+5(km)
Thời gian đi x+5 km là: \(\frac{x+5}{35}\)(h)
Theo đb có phương trình sau:\(\frac{x}{28}\)- \(\frac{x+5}{35}\)= \(\frac{3}{4}\)
Giải phương trình ta đc x=125(tmđk)
Vậy quãng đương cũ từ A đến B là 125km
BÀI 6:Thời gian để xe máy đi hết quãng đường là : 9h30' - 6h = 3,5h
Thời gian để ô tô đi hết quãng đường là: 9h30' - (6h - 1h ) = 2,5h
Gọi vận tốc trung bình của xe máy là x(km/h)(x>0)
Khi đó vận tốc trung bình của ô tô là x+20 (km/h)
Theo đb có phương trình sau: 3,5x = 2,5(20 + x )
Giải phương trình ta đc: x= 50 (tmđk)
Vậy vận tốc trung bình của xe máy là 50km/h và quãng đường AB dài 3,5.50=175 km
BÀI 7:Gọi thời điểm người t2 đuổi kịp người t1 là x(h)(x>7h)
Khi đó: Thời gian người t1 đi đến khi người t2 đuổi kịp là x-7(h)
Thời gian người t2 đi đến khi đuổi kịp người t1 là x-8(h)
Theo đb có phương trình sau:(x - 7)30 = (x - 8)45
Giải phương trình ta đc x=10(tmđk)
Vậy lúc 10h thì người t2 đuổi kịp người t1 và cách A là 90km
BÀI 8:Gọi thời gian đi đoạn đương bằng là x(h)(0<x<3)
Khi đó thời gian để đi đoạn đường dốc là 3 - x (h)
Theo đb có phương trình sau:10x -15(3 - x)=5
Giải phương trình ta đc x=2(tmđk)
Vậy quãng đường AB dài 10.2 + 15.1 + 5 =40km
BÀI 9:Gọi thời gian từ lúc xe máy khởi hành đến lúc 2 xe gặp nhau là x(h)(x>0,3h)
Khi đó: Quãng đường xe máy đi đc là 40x(km)
Thời gian ô tô đi đến lúc gặp xe máy là x - 0,3 (h)
Quãng đường ô tô đi đc là 45(x - 0,3) (km)
Theo đb có phương trình sau: 40x + 45(x - 3) = 97
Giải phương trình ta đc x=1,3(tmđk)
Vậy hai xe gặp nhau sau 1h18' sau khi xe máy khởi hành
BÀI 10:Gọi độ dài quãng đường AB là x (km)(x>0)
Theo đb có phương trình sau: \(\frac{x}{48}\)= 1 + \(\frac{1}{6}\)+\(\frac{x-48}{48+6}\)
Giải phương trình ta đc x=120 (tmđk)
Vậy quãng đường AB dài 120 km
Gọi vận tốc xe máy lúc đi từ A đến B là x
Gọi vận tốc xe máy lúc đi từ B đến A là y
(km/h; x > 0; y > 9)
Do vận tốc lúc về lớn hơn vận tốc lúc đi là 9 km/h => Ta có phương trình:
y - x = 9 (1)
Thời gian người đó đi từ A đến B là \(\dfrac{90}{x}\) (giờ)
Thời gian người đó đi từ B đến A là \(\dfrac{90}{y}\) (giờ)
Do thời gian người đó đi là 5 giờ => Ta có phương trình:
\(\dfrac{90}{x}+\dfrac{90}{y}+\dfrac{1}{2}=5\left(2\right)\)
(1)(2) <=> \(\left\{{}\begin{matrix}y-x=9< =>x=y-9\\\dfrac{90}{x}+\dfrac{90}{y}-\dfrac{9}{2}=0\left(3\right)\end{matrix}\right.\)
(3) <=> \(\dfrac{10}{x}+\dfrac{10}{y}-\dfrac{1}{2}=0\)
<=> \(\dfrac{20x+20y-xy}{2xy}=0\)
<=> \(20x+20y-xy=0\)
<=> 20(y-9) + 20y - (y-9)y = 0
<=> 20y - 180 + 20y - y2 +9y = 0
<=> y2 - 49y + 180 = 0
<=> (y-45)(y-4) = 0
<=> \(\left[{}\begin{matrix}y=45\left(c\right)\\y=4\left(l\right)\end{matrix}\right.\)
Thay y = 45 vào phương trình (1), ta có:
x = 45 - 9 = 36 (tm)
=> Vận tốc xe máy lúc đi từ A đến B là 36 km/h
Gọi vận tốc xe máy lúc đi từ A đến B là x (km/h; x > 0)
Vận tốc xe máy lúc đi từ B đến A là x + 9 (km/h)
Thời gian người đó đi từ A đến B là \(\dfrac{90}{x}\) (giờ)
Thời gian người đó đi từ B đến A là \(\dfrac{90}{x+9}\) (giờ)
Đổi 30 phút = \(\dfrac{1}{2}\) giờ
Do thời gian người đó đi là 5 giờ => Ta có phương trình
\(\dfrac{90}{x}+\dfrac{90}{x+9}+\dfrac{1}{2}=5\)
<=> \(\dfrac{90}{x}+\dfrac{90}{x+9}-\dfrac{9}{2}=0\)
<=> \(\dfrac{180\left(x+9\right)+180x-9x\left(x+9\right)}{2x\left(x+9\right)}=0\)
<=> \(180x+1620+180x-9x^2-81x=0\)
<=> \(9x^2-279x-1620=0\)
<=> \(x^2-31x-180=0\)
<=> (x-36)(x+5) = 0
<=> \(\left[{}\begin{matrix}x=36\left(c\right)\\x=-5\left(l\right)\end{matrix}\right.\)
KL: Vận tốc xe máy lúc đi từ A đến B là 36km/h
Gọi vận tốc lúc đi từ A đến B là x (km/h; x >0)
Thời gian người đó đi từ A đến B là \(\dfrac{90}{x}\) (giờ)
Vận tốc lúc đi từ B đến A là x + 9 (km/h)
Thời gian người đó đi từ B đến A là \(\dfrac{90}{x+9}\) (km/h)
Đổi 30 phút = \(\dfrac{1}{2}\) giờ
Do tời gian kể từ lúc bắt đầu đi từ A đến lúc về A là 5 giờ => Ta có phương trình:
\(\dfrac{90}{x}+\dfrac{90}{x+9}+\dfrac{1}{2}=5\)
<=> \(\dfrac{90}{x}+\dfrac{90}{x+9}-\dfrac{9}{2}=0\)
<=> \(\dfrac{10}{x}+\dfrac{10}{x+9}-\dfrac{1}{2}=0\)
<=> \(\dfrac{20\left(x+9\right)+20x-x\left(x+9\right)}{2x\left(x+9\right)}=0\)
<=> \(20x+180+20x-x^2-9x=0\)
<=> x2 - 31x - 180 = 0
<=> (x-36)(x+5) = 0
Mà x > 0
<=> x - 36 = 0 <=> x = 36 (tm)
KL: Vận tốc xe máy đi từ A đến B là 36 km/h
Gọi vận tốc của người đi xe máy trên 3/4 quãng đường AB đầu (90 km) là x (km/h) (x > 0)
Vận tốc của người đi xe máy trên 1/4 quãng đường AB sau là 0,5x (km/h)
Vận tốc của người đi xe máy khi quay trở lại A là x + 10 (km/h)
Tổng thời gian của chuyến đi là 90 x + 30 0 , 5 x + 120 x + 10 + 1 2 = 8 , 5
⇔ 90 x + 60 x + 120 x + 10 = 8 ⇔ 150 x + 120 x + 10 = 8 ⇔ 75 ( x + 10 ) + 60 x = 4 x ( x + 10 ) ⇔ 4 x 2 − 95 x − 750 = 0 ⇔ x = 30 ( d o x > 0 )
Vậy vận tốc của xe máy trên quãng đường người đó đi từ B về A là 30 + 10 = 40 (km/h)
Đổi 20 phút = 1/3 giờ
Thời gian người đó đi từ A đến B rồi quay về A là:
12 giờ 20 phút - 6 giờ 30 phút = 5 giờ 50 phút \(=\frac{35}{6}\)(giờ)
Gọi độ dài quãng đường AB là x (km) (x > 0)
Ta có: \(\frac{x}{25}+\frac{1}{3}+\frac{x}{30}=\frac{35}{6}\)
\(\Leftrightarrow\frac{6x+50+5x}{150}=\frac{875}{150}\)
\(\Leftrightarrow11x+50=875\Leftrightarrow x=75\)(thỏa mãn)
Quãng đường AB dài 75 km.
Gọi x(km/h) là vận tốc lúc đi của xe máy ( x > 0 )
Tổng thời gian đi và về ( không tính thời gian nghỉ ) là :
3h40' - 20' = 3h20' = 10/3h
Thời gian xe máy đi từ A đến B là 25/x (h)
Vận tốc lúc về hơn vận tốc lúc đi là 8km/h
=> Vận tốc lúc về là x+8(km/h)
Thời gian xe máy đi từ B về A là 25/(x+8) (h)
Vì tổng thời gian đi và về và 10/3h nên ta có phương trình :
\(\dfrac{25}{x}+\dfrac{25}{x+8}=\dfrac{10}{3}\)( giải pt này thì dễ rồi mình không làm )
=> x1 = -5 (ktm) ; x2 = 12(tm)
Vậy vận tốc lúc đi của xe máy đó là 12km/h