K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2016

5*x=3*y => x/3=y/5 => x=3k,y=5k

thay vào: 5x2+3y2/10x2-3y2=5.(3k)2+3.(5k)2/10.(3k)2-3(5k)2=45k2+75k2/90k2-75k2=k2.(45+75)/k2.(90+75)=120/165=8/11

3 tháng 11 2016

Cho hai so x,y khac 0 thoa man : 3x - y = 3z ; 2x + y = 7z

Tinh : B= \(\frac{x^2-2xy}{x^2+y^2}\)

22 tháng 3 2019

Đặt \(\frac{x}{3}=\frac{y}{5}=k\)=> \(x=3k\) ; \(y=5k\)

Khi đó, ta có: C = \(\frac{5.\left(3k\right)^2+3.\left(5k\right)^2}{10.\left(3k\right)^2-3.\left(5k\right)^2}\)

                          = \(\frac{5.3^2.k^2+3.5^2.k^2}{10.3^2.k^2-3.5^2.k^2}\)

                          = \(\frac{k^2.\left(5.9+3.25\right)}{k^2.\left(10.9-3.25\right)}\)

                          =  8

\(\frac{x}{3}=\frac{y}{5}\Rightarrow5x=3y\)

\(C=\frac{3xy+5xy}{6xy-5xy}=\frac{8xy}{1xy}=8\)

cách này nhanh hơn không :v  

14 tháng 8 2016

Đề là rút gọn hay tìm x,y ?

14 tháng 8 2016

tính giá trị biểu thức

NV
13 tháng 5 2019

\(\frac{x}{3}=\frac{y}{5}\Rightarrow x=\frac{3y}{5}\)

\(\Rightarrow B=\frac{5\left(\frac{3y}{5}\right)^2+3y^2}{10\left(\frac{3y}{5}\right)^2-3y^2}=\frac{\left(\frac{9}{5}+3\right)y^2}{\left(\frac{18}{5}-3\right)y^2}=\frac{\frac{9}{5}+3}{\frac{18}{5}-3}=8\)

13 tháng 5 2019

bn ở đội tuyển toán à

9 tháng 2 2017

Giải:
Đặt \(\frac{x}{3}=\frac{y}{5}=k\Rightarrow\left\{\begin{matrix}x=3k\\y=5k\end{matrix}\right.\)

Ta có: \(B=\frac{5x^2+3y^2}{10x^2-3y^2}=\frac{5\left(3k\right)^2+3\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}=\frac{45.k^2+75k^2}{90k^2-75k^2}=\frac{\left(45+75\right)k^2}{\left(90-75\right)k^2}\)

\(=\frac{120k^2}{15k^2}=\frac{120}{15}=8\)

Vậy B = 8

16 tháng 1 2020

Ta có: \(\frac{x}{y}=\frac{3}{5}.\)

\(\Rightarrow\frac{x}{3}=\frac{y}{5}.\)

Đặt \(\frac{x}{3}=\frac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=5k\end{matrix}\right.\)

Lại có: \(P=\frac{5x^2+3y^2}{10x^2-3y^2}\)

+ Thay \(x=3k\)\(y=5k\) vào P ta được:

\(P=\frac{5.\left(3k\right)^2+3.\left(5k\right)^2}{10.\left(3k\right)^2-3.\left(5k\right)^2}\)

\(\Rightarrow P=\frac{5.9k^2+3.25k^2}{10.9k^2-3.25k^2}\)

\(\Rightarrow P=\frac{45k^2+75k^2}{90k^2-75k^2}\)

\(\Rightarrow P=\frac{k^2.\left(45+75\right)}{k^2.\left(90-75\right)}\)

\(\Rightarrow P=\frac{45+75}{90-75}\)

\(\Rightarrow P=\frac{120}{15}\)

\(\Rightarrow P=8.\)

Vậy \(P=8.\)

Chúc bạn học tốt!

6 tháng 9 2016

Ta gọi: \(\frac{x}{3}=\frac{y}{5}=k\Rightarrow x=3k;y=5k\)

Thay x = 3k và y = 5k vào A ta có: \(A=\frac{5^2.\left(3k\right)^2+3^2.\left(5k\right)^2}{10^2.\left(3k\right)^2-3^2.\left(5k\right)^2}=\frac{25.9k^2+9.25k^2}{100.9k^2-9.25k^2}=\frac{9.25k^2\left(1+1\right)}{9.25k^2\left(4-1\right)}=\frac{2}{3}\)

23 tháng 8 2016

Đặt \(\frac{x}{3}=\frac{y}{5}=n\Rightarrow x=3n;y=5n\)

\(\Rightarrow A=\frac{5.3^2n^2+3.5^2n^2}{10.3^2n^2-3.5^2n^2}=\frac{n^2\left(45+75\right)}{n^2\left(90-75\right)}=\frac{n^2.120}{n^2.25}=\frac{24}{5}\)

23 tháng 8 2016

\(\frac{x}{3}=\frac{y}{5}\Rightarrow5x=3y\)

Thay 3y = 5x ; ta được: 

\(A=\frac{5x^2+5x^2}{10x^2-5x^2}=\frac{2\times5x^2}{2\times5x^2-5x^2}=\frac{2\times5x^2}{5x^2\times\left(2-1\right)}=\frac{2\times5x^2}{5x^2\times1}=2\)  

AH
Akai Haruma
Giáo viên
18 tháng 11 2021

Lời giải:
Đặt $\frac{x}{3}=\frac{y}{5}=t(t\neq 0)$

$\Rightarrow x=3t; y=5t$

Khi đó:

$\frac{5x^2+3y^2}{10x^2-3y^2}=\frac{5(3t)^2+3(5t)^2}{10(3t)^2-3(5t)^2}=\frac{120t^2}{15t^2}=8$