Giá trị của x để 2x^2-4x+1 đạt giá trị nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
\(a,P=\dfrac{1}{x^2+2x+1+5}=\dfrac{1}{\left(x+1\right)^2+5}\le\dfrac{1}{0+5}=\dfrac{1}{5}\\ \text{Dấu }"="\Leftrightarrow x=-1\\ b,Q=\dfrac{x^2+4x+4+2}{3}=\dfrac{\left(x+2\right)^2+2}{3}\ge\dfrac{0+2}{3}=\dfrac{2}{3}\\ \text{Dấu }"="\Leftrightarrow x=-2\)
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
a) * Nếu M ≥ a ⇔ 1 M ≤ 1 a ;
* Nếu M ≤ a ⇔ 1 M ≥ 1 a ;
b) Ta có x 2 - 4x + 12 = ( x - 2 ) 2 + 8 ≥ 8 hay 1 x 2 + 2 x + 11 ≤ 1 10 ⇒ N ≥ − 1 2
Giá trị nhỏ nhất của N = − 1 2 khi x = -1.
bài 1:
Ta thấy: \(\left(3x+9\right)^2\ge0\)
\(\Rightarrow2\left(3x+9\right)^2\ge0\)
\(\Rightarrow2\left(3x+9\right)^2+5\ge5\)
Dấu = khi \(3x+9=0\Leftrightarrow3x=-9\Leftrightarrow x=-3\)
Vậy x=-3 thì bt đạt GTNN
2x2 - 4x + 1 = 2x2 - 4x + 2 - 1 = 2(x2 - 2x + 1) - 1 = 2(x - 1)2 - 1
(x - 1)2 ≥ 0 với mọi x (dấu "=" xảy ra khi x = 1) => 2(x - 1)2 ≥ 0
=> 2(x - 1)2 - 1 ≥ -1
=> GTNN của biểu thức là -1 khi x = 1