cho tam giac ABC can tai A va tam giac DEF can tai D biet goc A bang 80 do goc E bang 50 do thi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Số đo góc ở đỉnh là \(180^0-2\cdot50^0=80^0\)
b: Số đo góc ở đáy là \(\dfrac{180^0-70^0}{2}=55^0\)
c: Vì ΔABC cân tại A
nên \(\widehat{B}=\widehat{C}=\dfrac{180^0-\widehat{A}}{2}\)
a: Số đo góc ở đáy là:
\(\dfrac{180^0-80^0}{2}=50^0\)
b: SỐ đo góc ở đỉnh là:
\(180^0-2\cdot80^0=20^0\)
* Xét tam giác ADB và tam giác ADE, ta có:
- AB = AE(gt)
- Góc BAD = góc EAD( do AD là phân giác góc BAC : theo gt)
- Chung cạnh AD
=> Tam giác ADB = Tam giác ADE(c-g-c) (1)
* Từ (1) => Góc ABD= góc AEB( các yếu tố tương ứng) (dpcm)
tk nha bạn
thank you bạn
(^_^)
tam giac ABC can tai A
=>\(\widehat{B}=\widehat{C}=\dfrac{180-\widehat{A}}{2}=\dfrac{180-80}{2}=50^0\)
tam giac DEF can tai D
\(=>\widehat{D}=180-\left(\widehat{E}+\widehat{F}\right)\)
mà E = F =50o( do tam giac DEF can tai D_
\(=>\widehat{D}=180-\left(50+50\right)=80^o\)
=>\(\text{ ΔABC∼ΔDEF}\)
\(\widehat{D}=180^0-2\cdot50^0=80^0\)
=>ΔABC\(\sim\)ΔDEF