K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2022

a, BA = BD (gt)

=> Δ ABD cân tại B (đn)

góc ABC = 60 (gt)

=> Δ ABD đều (dấu hiệu)

b) Ta có\(\widehat{A}\)=90 độ và\(\widehat{B}\)=60 độ =>\(\widehat{C}\)=30 độ (1)

Mà BI là phân giác của \(\widehat{B}\)=> \(\widehat{IBC}\)=30 độ(2)

từ (1) và (2) => Δ IBC cân tại I

c) xét 2 tam giác BIA và BID có: \(\widehat{A}\)+\(\widehat{AIB}\)+\(\widehat{IBA}\)+\(\widehat{IBD}\)+\(\widehat{BDI}\)+\(\widehat{DIB}\)=360 độ 

=> \(\widehat{AID}\)=120 độ

=> \(\widehat{DIC}\)=60 độ 

Xét Δ BIA và Δ CID có:

 DI=AI (Δ BIA=Δ BID)

\(\widehat{BIA}\)=\(\widehat{DIC}\)=60 độ

IB=IC(vìΔ IBC cân)

=>ΔBIA=Δ CID(c.g.c)

=> BA=CD mà BA=BD=> BD=DC

=> D là trung điểm của BC

d) vì AB=\(\dfrac{1}{2}\) BC nên BC=12 cm

Áp dụng định lí py-ta-go ta có:

BC2=AB2+AC2

=> AC2=BC2−AB2

=> AC2=144 - 36=108 cm

=> AC= \(\sqrt{108}\)(cm)

vậy BC=12 cm; AC= \(\sqrt{108}\)cm

10 tháng 3 2022

helpppppppppppppppppp

a: Xét ΔBAI và ΔBDI có

BA=BD

\(\widehat{ABI}=\widehat{DBI}\)

BI chung

Do đó: ΔBAI=ΔBDI

Suy ra: BA=BD

=>ΔBAD cân tại B

mà \(\widehat{ABD}=60^0\)

nên ΔBAD đều

b: Xét ΔBIC có \(\widehat{IBC}=\widehat{ICB}\)

nên ΔIBC cân tại I

c: ta có: ΔBAI=ΔBDI

nên IA=ID

mà ID<IC

nên IA<IC

Cho tam giác ABC có góc A=80 độ:B=60 độa) Trên BC lấy điểm M sao cho BM=BA. Tia phân giác góc B cắt AC tại D. Chứng minh: tam giác BAD= tam giác BMDb)Tia MD cắt tia BA tại H, chứng minh tam giác DHC cânc)Chứng minh BD>AM và tính số đo góc DHCCho tam giác ABC có góc A=80 độ:B=60 độa) Trên BC lấy điểm M sao cho BM=BA. Tia phân giác góc B cắt AC tại D. Chứng minh: tam giác BAD= tam giác BMDb)Tia MD cắt tia BA tại H, chứng minh tam giác DHC...
Đọc tiếp

Cho tam giác ABC có góc A=80 độ:B=60 độ

a) Trên BC lấy điểm M sao cho BM=BA. Tia phân giác góc B cắt AC tại D. Chứng minh: tam giác BAD= tam giác BMD

b)Tia MD cắt tia BA tại H, chứng minh tam giác DHC cân

c)Chứng minh BD>AM và tính số đo góc DHC

Cho tam giác ABC có góc A=80 độ:B=60 độ

a) Trên BC lấy điểm M sao cho BM=BA. Tia phân giác góc B cắt AC tại D. Chứng minh: tam giác BAD= tam giác BMD

b)Tia MD cắt tia BA tại H, chứng minh tam giác DHC cân

c)Chứng minh BD>AM và tính số đo góc DHCCho tam giác ABC có góc A=80 độ:B=60 độ

a) Trên BC lấy điểm M sao cho BM=BA. Tia phân giác góc B cắt AC tại D. Chứng minh: tam giác BAD= tam giác BMD

b)Tia MD cắt tia BA tại H, chứng minh tam giác DHC cân

c)Chứng minh BD>AM và tính số đo góc DHCCho tam giác ABC có góc A=80 độ:B=60 độ

a) Trên BC lấy điểm M sao cho BM=BA. Tia phân giác góc B cắt AC tại D. Chứng minh: tam giác BAD= tam giác BMD

b)Tia MD cắt tia BA tại H, chứng minh tam giác DHC cân

c)Chứng minh BD>AM và tính số đo góc DHCCho tam giác ABC có góc A=80 độ:B=60 độ

a) Trên BC lấy điểm M sao cho BM=BA. Tia phân giác góc B cắt AC tại D. Chứng minh: tam giác BAD= tam giác BMD

b)Tia MD cắt tia BA tại H, chứng minh tam giác DHC cân

c)Chứng minh BD>AM và tính số đo góc DHC

1

a) Xét ΔBAD và ΔBMD có 

BA=BM(gt)

\(\widehat{ABD}=\widehat{MBD}\)(BD là tia phân giác của \(\widehat{ABM}\))

BD chung

Do đó: ΔBAD=ΔBMD(c-g-c)

29 tháng 3 2022

Ta có BA=BM (gt)

         ^B=60 độ 

=>ΔABM  là Δ đều

29 tháng 3 2022

xét ΔBAD và ΔBMD 

có AB=BM

   ^ABD=^MBD

  BD chnsg 

suy  ra ΔBAD =ΔBMD 

5 tháng 5 2019

a, BA = BD (gt)

=> tam giác ABD cân tại B (đn)

góc ABC = 60 (gt)

=>  tam giác ABD đều (dấu hiệu)

5 tháng 5 2019

b) ta có \(\widehat{A}\)=90 độ và \(\widehat{B}\)=60 độ => \(\widehat{C}\)=30 độ (1)

Mà BI là p/g của \(\widehat{B}\)=> \(\widehat{IBC}\)=30 độ(2)

từ (1) và (2) => t.giác IBC cân tại I

c) xét 2 tam giác BIA và BID có: \(\widehat{A}\)+\(\widehat{AIB}\)+\(\widehat{IBA}\)+\(\widehat{IBD}\)+\(\widehat{BDI}\)+\(\widehat{DIB}\)=360 độ 

=> \(\widehat{AID}\)=120 độ

=> \(\widehat{DIC}\)=60 độ 

xét t.giác BIA và t.giác CID có:

 DI=AI(t.giác BIA=t.giác BID)

\(\widehat{BIA}\)=\(\widehat{DIC}\)=60 độ

IB=IC(vì t.giác IBC cân)

=> t.giác BIA=t.giác CID(c.g.c)

=> BA=CD mà BA=BD=> BD=DC

=> D là trung điểm của BC

c) vì AB=1/2 BC nên BC=12 cm

áp dụng định lí py-ta-go ta có:

\(BC^2=AB^2+AC^2\)

=> \(AC^2\)=\(BC^2-AB^2\)

=> \(AC^2\)=144 - 36=108 cm

=> AC= \(\sqrt{108}\)(cm)

vậy BC=12 cm; AC= \(\sqrt{108}\)cm

A B C D I 6cm