tìm k để phương trình 2x2 -2(k-1)x+k-3=0 có hai nghiệm trái dấu mà nghiệm âm có giá trị tuyệt đối bé hơn nghiệm dương?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x=1 vào phương trình ta được:
2(2.1+1)+18=3(1+2)(2.1+k)
->24=9(2+k)
-> k=2/3
P/S: với dạng toán hỏi: tìm giá trị của k để biểu thức có nghiệm là x=\(x_0\)thì ta giái bằng cách thay nghiệm \(x_0\)đó vào phương trình rồi giải tìm ra k
2(2x+1)+18=3(x+2)(2x+k)
Thay x=1 vào phương trình trên :
2(2+1)+18=3(1+2)(2+k)
4+2+18=(3+6)(2+k)
24=6+3k+12+6k
-3k-6k=-24+6+12
-9k=-6
k=2/3
a) Ta có: \(\Delta'=(\frac{6}{2})^2-m\)
\(=9-m\)
Để phương trình có 2 nghiệm phân biệt thì:
\(\Delta>0\)
\(\Rightarrow 9-m>0\)
\(\Leftrightarrow m<9\)
Vậy khi m < 9 thì phương trình có 2 nghiệm phân biệt
b)Theo định lí Vi-ét ta có:
\(x_1.x_2=\frac{-m}{1}=-m(1)\)
\(x_1+x_2=\frac{-6}{1}=-6\)
Lại có \(x_1=2x_2\)
\(\Rightarrow3x_2=-6\)
\(\Leftrightarrow x_2=-2\)
\(\Rightarrow x_1=-4\)
Thay x1;x2 vào (1) ta được
\(8=m\)
Vậy m-8 thì x1=2x2
Ở trên có đoạn mình đánh lộn \(\Delta'\) ra \(\Delta\) nhé
Phương trình 1) có nghiệm duy nhất là 0
2) Ta có:
\(\hept{\begin{cases}\left|a\right|\ge0\forall a\\-\left|b\right|\le0\forall b\end{cases}}\)
Mà \(\left|5x+2\right|=-\left|5x-2\right|\)
=> \(\left|5x+2\right|=\left|5x-2\right|=0\)
=> \(5x+2=5x-2=0\)
=> Pt vô nghiệm
Thay x=3 vào pt ta có:
\(\dfrac{2}{x-m}-\dfrac{5}{x+m}=1\\ \Leftrightarrow\dfrac{2}{3-m}-\dfrac{5}{3+m}=1\\ \Leftrightarrow\dfrac{2\left(3+m\right)-5\left(3-m\right)}{\left(3-m\right)\left(3+m\right)}=1\\ \Rightarrow6+2m-15+5m=3^2-m^2\\ \Leftrightarrow-9+7m-9+m^2-0\\ \Leftrightarrow m^2+7m-18=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2\\m=-9\end{matrix}\right.\)