K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2016

\(P=\left(\left(100^2-1^2\right)-\left(99^2-2^2\right)\right)+...+\left(\left(52^2-49^2\right)-\left(51^2-50^2\right)\right)\)

\(=\left(99.101-97.101\right)+...+\left(3.101-1.101\right)\)

\(=2.101+...+2.101\)

\(=2.25.101=5050\)

Giải thích bài giải: Ta chia thành các nhóm 4 số như trên sẽ có 25 nhóm như vậy

1 tháng 11 2016

sai đề rồi chú mày

P= 1002 - 992 + 982 ......... + 22 - 12

Bài 1: 

a: \(2A=2^{101}+2^{100}+...+2^2+2\)

\(\Leftrightarrow A=2^{100}-1\)

b: \(3B=3^{101}+3^{100}+...+3^2+3\)

\(\Leftrightarrow2B=3^{100}-1\)

hay \(B=\dfrac{3^{100}-1}{2}\)

c: \(4C=4^{101}+4^{100}+...+4^2+4\)

\(\Leftrightarrow3C=4^{101}-1\)

hay \(C=\dfrac{4^{101}-1}{3}\)

 

24 tháng 8 2015

AI MUỐN KẾT BẠN VỚI MÌNH KHÔNG VẬY ?

24 tháng 8 2015

ố 29 phút trước tui làm gì lên

6 tháng 9 2016

giai giup minh nha

8 tháng 11 2020

Bằng 101 là đúng

4 tháng 8 2016

\(A=\frac{101+100+99+98+....+3+2+1}{101-100+99-98+...+3-2+1}\)

\(A=\frac{1+2+3+...+98+99+100+101}{\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1}\)có 50 cặp số ở dưới mẫu

\(A=\frac{\frac{101.102}{2}}{50.1+1}\)

\(A=\frac{5151}{51}\)

\(A=101\)

4 tháng 8 2016

Đặt A = 101+100+....+3+2+1

=> Số số hạng của A là: (101-1)+1 = 101 (số)

Tổng A là: (101+1) x 101 :2 = 5151

Đặt B = 101 -100+99 -98+97+...+3-2+1

=> 100 +98+....+1

=> Số số hạng: (100-1)+1 = 100 (số)

Tổng B là: (100 +1) x 100 :2 = 5050

Vậy \(\frac{A}{B}=\frac{5151}{5050}=\frac{51}{50}\)

3 tháng 1 2017

A=-1+(-1)+...+(-1) {có 50 số hạng}

=-1.50=-50

3 tháng 1 2017

A=1-2+3-4+...+99-100       SSH=(100-1):1+1=100 Sh

=>A=(1-2)+(3-4)+....+(99-100)

vì chia thành cặp suy ra 100:2 =50 cặp

A=(-1)+(-1)+...(-1)

A=(-1).50

A=-50