\(P=100^2-99^2+98^2.........+2^2+1^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(2A=2^{101}+2^{100}+...+2^2+2\)
\(\Leftrightarrow A=2^{100}-1\)
b: \(3B=3^{101}+3^{100}+...+3^2+3\)
\(\Leftrightarrow2B=3^{100}-1\)
hay \(B=\dfrac{3^{100}-1}{2}\)
c: \(4C=4^{101}+4^{100}+...+4^2+4\)
\(\Leftrightarrow3C=4^{101}-1\)
hay \(C=\dfrac{4^{101}-1}{3}\)
tính nhanh (2/3+3/4+5/6+...+99/100).(1/2+2/3+3/4+...+98/99)-(1/2+1/3+...+99/100).(2/3+2/4+...+98/99)
\(A=\frac{101+100+99+98+....+3+2+1}{101-100+99-98+...+3-2+1}\)
\(A=\frac{1+2+3+...+98+99+100+101}{\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1}\)có 50 cặp số ở dưới mẫu
\(A=\frac{\frac{101.102}{2}}{50.1+1}\)
\(A=\frac{5151}{51}\)
\(A=101\)
Đặt A = 101+100+....+3+2+1
=> Số số hạng của A là: (101-1)+1 = 101 (số)
Tổng A là: (101+1) x 101 :2 = 5151
Đặt B = 101 -100+99 -98+97+...+3-2+1
=> 100 +98+....+1
=> Số số hạng: (100-1)+1 = 100 (số)
Tổng B là: (100 +1) x 100 :2 = 5050
Vậy \(\frac{A}{B}=\frac{5151}{5050}=\frac{51}{50}\)
A=1-2+3-4+...+99-100 SSH=(100-1):1+1=100 Sh
=>A=(1-2)+(3-4)+....+(99-100)
vì chia thành cặp suy ra 100:2 =50 cặp
A=(-1)+(-1)+...(-1)
A=(-1).50
A=-50
\(P=\left(\left(100^2-1^2\right)-\left(99^2-2^2\right)\right)+...+\left(\left(52^2-49^2\right)-\left(51^2-50^2\right)\right)\)
\(=\left(99.101-97.101\right)+...+\left(3.101-1.101\right)\)
\(=2.101+...+2.101\)
\(=2.25.101=5050\)
Giải thích bài giải: Ta chia thành các nhóm 4 số như trên sẽ có 25 nhóm như vậy
sai đề rồi chú mày
P= 1002 - 992 + 982 ......... + 22 - 12