K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2019

A = | x - 1 | + | x - 2018 |

A = | 1 - x | + | x - 2018 |

A = | 1 - x | + | x - 2018 | \(\ge\) | 1 - x + x - 2018 |

A = | 1 - x | + | x - 2018 | \(\ge\) 2017

Dấu = xảy ra \(\Leftrightarrow\)1 - x\(\ge\)0 , x - 2018 \(\ge\)0 ( không thõa mãn ) hoặc 1 - x \(\le\)0 , x - 2018 \(\le\)0

\(\Leftrightarrow\)\(\le\)0\(\le\)2018

\(\Rightarrow\)\(\ge\)2017 . Dấu = xảy ra \(\Leftrightarrow\)\(\le\)\(\le\)2018

Vậy : Min A = 2017 \(\Leftrightarrow\)\(\le\)x\(\le\)2018

AH
Akai Haruma
Giáo viên
6 tháng 1 2023

Lời giải:

Sử dụng BĐT sau:

Cho $a,b$ thực. Khi đó $|a|+|b|\geq |a+b|$. Dấu "=" xảy ra khi $ab\geq 0$. Áp dụng vào bài toán:

$|x-2018|+|x-2022|=|x-2018|+|2022-x|\geq |x-2018+2022-x|=4$

$|x-2020|\geq 0$ (theo tính chất trị tuyệt đối)

$\Rightarrow A\geq 4+0=4$

Vậy GTNN của $A$ là $4$. Giá trị này đạt được khi $(x-2018)(2022-x)\geq 0$ và $x-2020=0$

Hay khi $x=2020$

27 tháng 1 2023

vì sao dấu "=" xảy ra khi ab ≥0 thế ạ ?

 

12 tháng 12 2021

giúp mình nha

 

15 tháng 4 2019

Ta có |x+2018| >= x+2018  

         | x-2018|>=2018-x

=>|x+2018|+|x-2018|>= x+2018+2018-x = 4036 

Dấu = xảy <=> x+2018 >=0=>   x>=-2018

                         x-2018<=0        x<=2018

Vậy GTNN A=4036 <=> -2018=<x<=2018

Thưa bạn o có GTLN 

T i ck mja

15 tháng 4 2019

Bạn giải cụ thể ra được ko

1 tháng 2 2018

Linh cảm của chúa Pain đề sai :)

đề phải là tìm giá trị lớn nhất .

a,  \(a=\frac{1}{x^2+5}\)

\(x^2+5\ge5\)

mẫu : \(\ge\rightarrow\le\)

\(\Rightarrow A\le\frac{1}{5}"="\Leftrightarrow x=0\)

b,

\(b=\frac{\left(x+y-z\right)^2.2018}{a^4+b^4+2018}\)

\(a^4\ge0."="\Leftrightarrow a=0\)

\(b^4\ge0"="\Leftrightarrow b=0\)

\(a^4+b^4+2018\ge2018\)

mẫu \(\ge\rightarrow\le\)

\(\Rightarrow B\le\frac{\left(x+y-z\right)^2.2018}{2018}\Rightarrow B\le0\le\left(x+y-z\right)^2\)  ( rút gọn 2018)

\(\Rightarrow B\le0\)

P/s : Chém bừa 

2 tháng 2 2018

k có B thỏa mãn

9 tháng 10 2021

\(A=\left(x-1\right)\left(2x-1\right)\left(2x^2-3x-1\right)+2018\)

\(=\left(2x^2-3x+1\right)\left(2x^2-3x-1\right)+2018\)

\(=\left(2x^2-3x\right)^2-1+2018\)

\(=\left(2x^2-3x\right)^2+2017\ge2017\)

\(minA=2017\Leftrightarrow2x^2-3x=0\)

\(\Leftrightarrow x\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)

28 tháng 3 2022

\(P=\dfrac{x}{\sqrt{x}-1}+2018=\dfrac{x-1+1}{\sqrt{x}-1}+2018\)

\(=\dfrac{x-1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}-1}+2018=\sqrt{x}+1+\dfrac{1}{\sqrt{x}-1}+2018\)

\(=\left(\sqrt{x}-1\right)+\dfrac{1}{\sqrt{x}-1}+2020\) 

\(\ge2\sqrt{\left(\sqrt{x}-1\right).\dfrac{1}{\sqrt{x}-1}}+2020\) (BĐT Cauchy)

\(=2022\) (Dấu "=" khi \(\sqrt{x}-1=\dfrac{1}{\sqrt{x}-1}\Leftrightarrow x=4\) (tm))

28 tháng 2 2019

\(\left(x-1\right)^{10}+\left(y-3\right)^{20}+2018\)

Nhận xét: \(\left(x-1\right)^{10}\ge0;\left(y-3\right)^{20}\ge0\)

\(\Rightarrow\left(x-1\right)^{10}+\left(y-3\right)^{20}+2018\ge2018\)

Dấu bằng xảy ra khi x=1 y=3

29 tháng 7 2019

GTNN của A bằng -1 với x = 2018.

29 tháng 7 2019

\(A=|x-2017|+|x-2018|\)

\(=|2017-x|+|x-2018|\ge|2017-x+x-2018|\)

Hay \(A\ge1\)

Dấu'=' xảy ra \(\Leftrightarrow\left(2017-x\right)\left(x-2018\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}2017-x\ge0\\x-2018\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}2017-x< 0\\x-2018< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\le2017\\x\ge2018\end{cases}\left(loai\right)}\)hoặc \(\hept{\begin{cases}x>2017\\x< 2018\end{cases}}\)

\(\Leftrightarrow2017< x< 2018\)

Vậy MIN A=1 \(\Leftrightarrow2017< x< 2018\)