Cho Tam giác ABC vuông tại A.Trên cạnh BC lấy điểm H sao cho BH = BA. Qua H vẽ đường thẳng vuông góc với BC, đường thẳng này cắt AC tại E
a)Chứng minh ∆ABE = ∆HBE
b) So sánh AE và EC
c)Chứng minh BE là đường trung trực của AH
d)Gọi M là trung điểm của BH,AM cắt BE tại I. Biết AB=5cm, AH=6cm. Tính BI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình tự vẽ, c,d tự làm tiếp, bài này đơn giản nha.
a/ Xét ΔABD và ΔEBD vuông tại A và E có:
BD chung; AB = EB; góc A=E=90o
=> ΔABD = ΔEBD (...)
=> góc ABD = góc EBD
=> BD là phân giác của góc ABC
b,xét tam giác BEK vuông tại Evà tam giác BACvuông tại E , có BE=BA, góc KBC chung
=>tam giac BEK= tam giac BAC (ch-gn)
a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
BA=BE(gt)
Do đó: ΔABD=ΔEBD(cạnh huyền-cạnh góc vuông)
Suy ra: \(\widehat{ABD}=\widehat{EBD}\)(hai góc tương ứng)
\(\Leftrightarrow\widehat{ABD}=\widehat{CBD}\)
mà tia BD nằm giữa hai tia BA,BC
nên BD là tia phân giác của \(\widehat{ABC}\)(đpcm)
a) Áp dụng định lí Pi - ta - go cho tam giác ABC vuông tại A có :
AB^2+AC^2 =BC^2hay AC^2=15^2-9^2=144 hay AC=12
b)Xét tam giác ABE và DBE có :
Góc A=góc B(=90 độ)
BA=BD(gt)
Chung cạnh BE
suy ra tam giác ABE= BDE (c.g.c)
c) Từ tam giác ABE=BDE(cm ở ý b) suy ra góc ABE = góc DBE (2 góc tương ứng )
Suy ra BE là tia phân giác cua góc ABC
Xét tam giác BDK và BAC có :
Chung góc B
BA=BD(gt)
góc D = góc A (=90 độ)
suy ra tam giác BDK=tam giác BAC (g.c.g)
suy ra AC=DK (2 cạnh tương ứng )
( Mình chỉ làm được ý a,b,c thôi , mình ngại vẽ hình . Nếu đúng kết bạn với mình nhé )
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)
hay AC=4(cm)
Vậy: AC=4cm
a. Có thể em thiếu giả thiết đọ lớn của các canhk AB, AC. Nếu có, ta dùng định lý Pi-ta-go để tính độ dài BC.
b. Ta thấy ngay tam giác ABE bằng tam giác DBE (cạnh huyền - cạnh góc vuông)
Từ đó suy ra \(\widehat{ABE}=\widehat{DBE}\) hay BE là phân giác góc ABC.
c. Ta thấy tam giác ABC bằng tam giác DBK (cạnh góc vuông - góc nhọn kề)
nên AC = DK.
d. Do tam giác ABE bằng tam giác DBE nên \(\widehat{AEB}=\widehat{DEB}\)
Lại có AH // KD (Cùng vuông góc BC) nên \(\widehat{AME}=\widehat{MED}\) (so le trong)
Vậy \(\widehat{AME}=\widehat{AEM}\)
Vậy tam giác AME cân tại A.
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
BA=BH
=>ΔBAE=ΔBHE
b: ΔBAE=ΔBHE
=>EA=EH
=>ΔEAH cân tại E
c: BA=BH
EA=EH
=>BE là trung trực của AH
d: Xét ΔBKC có
KH,CA là đường cao
KH cắt CA tại E
=>E là trực tâm
=>BE vuông góc KC
a) ΔABE = ΔDBE.
Xét hai tam giác vuông ABE và DBE có:
BA = BD (gt)
BE là cạnh chung
Do đó: ΔABE = ΔDBE (cạnh huyền - cạnh góc vuông)
b) BE là đường trung trực của AD.
Gọi giao điểm của AD và BE là I .
Vì ΔABE = ΔDBE (câu a) ⇒ ∠B1 = ∠B2 ( hai góc tương ứng)
Xét ΔABI và ΔDBI có:
BA = BD (gt)
∠B1 = ∠B2 (cmt)
BI : cạnh chung.
Do đó: ΔABI = ΔDBI (c - g - c)
⇒ AI = DI (hai cạnh tương ứng) (1)
∠I1 = ∠I2 (hai góc tương ứng) mà ∠I1 + ∠I2 = 180°
⇒ ∠I1 = ∠I2 = 180° : 2 = 90°
Hay BE ⊥ AD (2)
Từ (1) và (2) suy ra: BE là đường trung trực của AD
c) ΔBCF cân.
Vì ΔABE = ΔDBE (câu a) ⇒ AE = DE (hai cạnh tương ứng)
Xét hai tam giác vuông AEF và DEC có:
AE = DE (cmt)
∠E1 = ∠E2 (đối đỉnh)
Do đó: ΔAEF = ΔDEC (cạnh góc vuông - góc nhọn kề)
⇒ AF = CD (hai cạnh tương ứng)
Ta có: BF = AB + AF và BC = BD + DC (3)
Mà: BA = BD (gt) và AF = DC (cmt) (4)
Từ (3) và (4) suy ra: BF = BC
Hay ΔBFC cân tại B.
d) B, E, H thẳng hàng.
Vì ∠B1 = ∠B2 (câu b)
Nên BE là phân giác của góc B (5)
Xét ΔFBH và ΔCBH có:
BF = BC (câu c)
FH = HC (trung điểm H của BC)
BH : chung
Do đó: ΔFBH = ΔCBH (c - c - c)
⇒ ∠FBH = ∠CBH (hai góc tương ứng)
⇒ BH là phân giác của góc B (6)
Từ (5) và (6) suy ra: B, E, H thẳng hàng.
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
BA=BH
Do đó; ΔBAE=ΔBHE
b: ta có: AE=EH
mà EH<EC
nên AE<EC
c: ta có: BA=BH
EA=EH
Do đó: BE là đường trung trực của AH
Còn vẽ hình nha