tìm giá trị nhỏ nhất của C= 2x-2/9x2-10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=x^2-8x+16+1=\left(x-4\right)^2+1\ge1\)
Dấu \("="\Leftrightarrow x=4\)
\(b,=\left(4x^2-12x+9\right)+4=\left(2x-3\right)^2+4\ge4\)
Dấu \("="\Leftrightarrow x=\dfrac{3}{2}\)
\(c,=\left(9x^2-2\cdot3\cdot\dfrac{1}{3}x+\dfrac{1}{9}\right)+\dfrac{26}{9}=\left(3x-\dfrac{1}{3}\right)^2+\dfrac{26}{9}\ge\dfrac{26}{9}\)
Dấu \("="\Leftrightarrow3x=\dfrac{1}{3}\Leftrightarrow x=\dfrac{1}{9}\)
a) Ta có: \(25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{2}{5}\)
b) Ta có: \(9x^2-6x+2\)
\(=9x^2-6x+1+1\)
\(=\left(3x-1\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)
c) Ta có: \(-x^2+2x-2\)
\(=-\left(x^2-2x+2\right)\)
\(=-\left(x^2-2x+1+1\right)\)
\(=-\left(x-1\right)^2-1\le-1\forall x\)
Dấu '=' xảy ra khi x-1=0
hay x=1
d) Ta có: \(x^2+12x+39\)
\(=x^2+12x+36+3\)
\(=\left(x+6\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi x=-6
e) Ta có: \(-x^2-12x\)
\(=-\left(x^2+12x+36-36\right)\)
\(=-\left(x+6\right)^2+36\le36\forall x\)
Dấu '=' xảy ra khi x=-6
f) Ta có: \(4x-x^2+1\)
\(=-\left(x^2-4x-1\right)\)
\(=-\left(x^2-4x+4-5\right)\)
\(=-\left(x-2\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi x=2
a) Ta có: \(25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{2}{5}\)
b) Ta có: \(9x^2-6x+2\)
\(=9x^2-6x+1+1\)
\(=\left(3x-1\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)
c) Ta có: \(-x^2+2x-2\)
\(=-\left(x^2-2x+2\right)\)
\(=-\left(x^2-2x+1+1\right)\)
\(=-\left(x-1\right)^2-1\le-1\forall x\)
Dấu '=' xảy ra khi x=1
( Mình trình bày mẫu câu a các câu khác mình làm tắt lại nhưng tương tự trình bày câu a nha )
a, Ta có : \(25x^2-20x+7=\left(5x\right)^2-2.5x.2+2^2+3\)
\(=\left(5x-2\right)^2+3\)
Thấy : \(\left(5x-2\right)^2\ge0\forall x\in R\)
\(\Rightarrow\left(5x-2\right)^2+3\ge3\forall x\in R\)
Vậy \(Min=3\Leftrightarrow5x-2=0\Leftrightarrow x=\dfrac{2}{5}\)
b, \(=9x^2-2.3x+1+1=\left(3x-1\right)^2+1\ge1\)
Vậy Min = 1 <=> x = 1/3
c, \(=-x^2+2x-1-1=-\left(x^2-2x+1\right)-1=-\left(x-1\right)^2-1\le-1\)
Vậy Max = -1 <=> x = 1
d, \(=x^2+2.x.6+36+3=\left(x+6\right)^2+3\ge3\)
Vậy Min = 3 <=> x = - 6
e, \(=-x^2-2.x.6-36+36=-\left(x+6\right)^2+36\le36\)
Vậy Max = 36 <=> x = -6 .
f, \(=-x^2+4x-4+5=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\le5\)
Vậy Max = 5 <=> x = 2
\(9-9x^2+2x-\dfrac{2}{9}\\ =-\left(9x^2-2x+\dfrac{1}{9}-\dfrac{80}{9}\right)\\ =-\left(3x+\dfrac{1}{3}\right)^2+\dfrac{80}{9}\le\dfrac{80}{9}\)
Dấu "=" xảy ra khi \(-\left(3x+\dfrac{1}{3}\right)^2=0\)
\(\Leftrightarrow3x+\dfrac{1}{3}=0\\ \Leftrightarrow3x=-\dfrac{1}{3}\\ \Leftrightarrow x=-\dfrac{1}{9}\)
Vậy \(Max=\dfrac{80}{9}\Leftrightarrow x=-\dfrac{1}{9}\)
9 - 9x2 + 2x - \(\dfrac{2}{9}\)
=\(\dfrac{80}{9}\)-[(3x)2-2x+(\(\dfrac{1}{3}\))2]
=\(\dfrac{80}{9}\)-(3x-\(\dfrac{1}{3}\))2
Vì (3x-\(\dfrac{1}{3}\))2≥0 ⇒-(3x-\(\dfrac{1}{3}\))2≤0⇒\(\dfrac{80}{9}\)-(3x-\(\dfrac{1}{3}\))2≤\(\dfrac{80}{9}\)
Trường hợp dấu bằng xảy ra khi: (3x-\(\dfrac{1}{3}\))2=0⇒3x-\(\dfrac{1}{3}\)=0⇒3x=\(\dfrac{1}{3}\)⇒x=\(\dfrac{1}{9}\)
Vậy GTLN của biểu thức là \(\dfrac{80}{9}\) khi x=\(\dfrac{1}{9}\)
\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)
a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
Dấu "=" \(\Leftrightarrow x=-1\)
b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)
c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)
Dấu "=" \(\Leftrightarrow x=2\)
a. ta có (2x-5)2 >= 0 với mọi x thuộc R
vậy 5 -(2x-5)2 <= 5
dấu = xảy ra khi (2x-5)2=0
vậy 2x-5=0
2x =5
x= 5/2=2,5
Vậy để B lớn nhất thì x=2,5
b. ta có | 2x-4| >= 0 với mọi x thuộc R
| 2x-6| >= 0 với mọi x thuộc R
vậy | 2x-4 |- |2x-6| >= 0
dấu = xảy ra khi |2x-4| và |2x-6| đều bằng 0
=> 2x-4=0 => 2x - 6=0
2x =4 2x =6
x=4/2=2 x= 6/2=3