K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2016

theo minh thi

vi n.2 la so chan 12.n cung la so chan ma so chan nhan so chan thi n=so chan.co chan=so chan

ma chi co duy nhat mot so nguyen to chan la 2 nen p = 2

sau do r thi minh cung ko biet nua

10 tháng 5 2021

ta có A=\(\frac{n+1}{n-3}\)

để A nguyên thì \(n+1⋮n-3\Rightarrow n-3+4⋮̸n-3\)

vì \(n-3⋮n-3\Rightarrow4⋮n-3\Rightarrow\left(n-3\right)\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

n-3-1-2-4124
n21-1457

vậy \(n\in\left\{2;1;-1;4;5;7\right\}\)


 

17 tháng 7 2016

Đặt \(A=n^2-4n+7\) .

1. Với n = 0 => A = 7 không là số chính phương (loại)

2. Với n = 1 => A = 4 là số chính phương (nhận)

3. Với n > 1 , ta xét khoảng sau : \(n^2-4n+4< n^2-4n+7< n^2\)

\(\Rightarrow\left(n-2\right)^2< A< n^2\)

Vì A là số tự nhiên nên  \(A=\left(n-1\right)^2\Leftrightarrow n^2-4n+7=n^2-2n+1\Leftrightarrow2n=6\Leftrightarrow n=3\)

Thử lại, n = 3 => A = 4 là một số chính phương.

Vậy : n = 1 và n = 3 thoả mãn đề bài .

22 tháng 7 2022

không có cây trả lời

 

31 tháng 12 2019

(Chú ý : số nguyên tố chỉ có ước là 1 và chính nó nên với số có thể phân tích thành tích hai thừa số thì điều kiện cần để số đó là số nguyên tố là 1 trong 2 thừa số bằng 1.)

Ta có: \(n^3-n^2+n-1=\left(n^3-n^2\right)+\left(n-1\right)=n^2\left(n-1\right)+\left(n-1\right)=\left(n-1\right)\left(n^2+1\right)\)

Để \(n^3-n^2+n-1\) là số nguyên tố 

=> \(\orbr{\begin{cases}n-1=1\\n^2+1=1\end{cases}\Rightarrow}\orbr{\begin{cases}n=2\\n=0\end{cases}}\)

Thử lại với bài toán đầu xem có phù hợp không 

Với n = 2: \(n^3-n^2+n-1=2^3-2^2+2-1=5\)là số nguyên tố nên n = 2 thỏa mãn.

Với n = 0 :  \(n^3-n^2+n-1=-1\)không là số nguyên tố.

Vậy n = 2.

30 tháng 10 2016

không có giá trị của n

30 tháng 10 2016

Nếu n > 0 thì 3n .: 3 ; 3n\(\ge3\) mà 18 .3 => 3n + 18 .: 3 ; 3n + 18 > 3 => 3n + 18 là hợp số

=> n = 0.Thử 30 + 18 = 19 là số nguyên tố.Vậy n = 0

13 tháng 4 2017

n khác 2k -1