Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu n = 0 thì 23k = 0 ko nguyên tố (ko tm)
Nếu n = 1 thì 23k = 23 nguyên tố (tm)
Nếu n >=2 thì 23k chia hết cho 23 và 23k > 23 => 23k là hợp số
Vậy n = 1
k mk nha
Ta có :n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n-4 chia hết cho n-2
=> 10-2n-(2n-4) chia hết cho n-2 => 10-2n-2n+4 chia hết cho n-2 => 14 chia hết cho n-2
Còn lại tự tìm
\(10-2n⋮n-2\)
\(\Rightarrow6-2n-4⋮n-2\)
\(\Rightarrow6-2(n-2)⋮n-2\)
\(\Rightarrow6⋮n-2\)
\(\Rightarrow n-2\inƯ(6)=\left\{1;2;3;6\right\}\)
\(\text{Ta có bảng sau :}\)
\(n-2\) | \(1\) | \(2\) | \(3\) | \(6\) |
\(n\) | \(3\) | \(4\) | \(5\) | \(8\) |
gọi UCLN(2n+1,3n+1)=d
=>6n+2 chia hết cho d
6n+3 chia hết cho d
=>1 chia hết cho d
=>d=1
=>2n+1/3n+1 tối giản
a. 2+4+6+8+...+2x=156
2.(1+2+3+...+x)=156
1+2+3+...+x=156:2
1+2+3+...+x=78
Ta có: 1+2+3+...+x=x.(x+1)/2
Mặt khác: 1+2+...+x=78
Suy ra: x.(x+1)/2+78
x.(x+1)=78.2=156
Vì x và x+1 là 2 STN liên tiếp (1)
Có: 156=2^2.3.13=12.13 (2)
Từ (1)(2) suy ra: x=12 ( thỏa mãn điều kiện x là STN)
Vậy x=12 ( Thỏa mãn ĐKBT )
b. Ta có: P= 6n-3/4n-6= 3.(2n-3)+2/2.(2n-3)= 3.(2n-3)/2.(2n-3)+ 2/2n-3= 3/2+ 2/2n-3
Để 6n-3/4n-6 đạt GTLN khi 2/2n-3 đạt GTLN
Suy ra: 2n-3 là số nguyên dương nhỏ nhất
Mà số nguyên dương nhỏ nhất là 1
Suy ra: 2n-3=1
2n=4
n=2 (thỏa mãn điều kiên n là số nguyên)
Vậy với n=2, 6n-3/4n-6 đật GTLN là: 6.2-3/4.2-6 = 12-3/8-6 = 4
bạn làm rất đúng chúc mừng bạn đã làm bài rất đúng mình có lời khen !!! very very good 10 điển giành cho bạn ??
Ta có:
n2 + 2n - 3
= n2 + 3n - n - 3
= n(n + 3) - (n + 3)
= (n - 1)(n + 3)
Nên: n2 + 2n - 3 : n - 1
= (n - 1)(n + 3) : (n - 1)
= n + 3
Vậy với mọi x ∈ Z thì n2 + 2n - 3 : n - 1 luôn nguyên
ĐK : n nguyên và n khác 1
\(n^2+2n-3=n\left(n-1\right)+3\left(n-1\right)\\ =\left(n-1\right)\left(n+3\right)\)
Để n^2 + 2n - 3 chia hết cho n - 1
Thì : (n-1)(n+3) chia hết cho n - 1
Mà : (n-1)(n+3) luôn chia hết cho n - 1 với mọi n nguyên và n khác 1
Vậy n thuộc Z, n khác 1
(Chú ý : số nguyên tố chỉ có ước là 1 và chính nó nên với số có thể phân tích thành tích hai thừa số thì điều kiện cần để số đó là số nguyên tố là 1 trong 2 thừa số bằng 1.)
Ta có: \(n^3-n^2+n-1=\left(n^3-n^2\right)+\left(n-1\right)=n^2\left(n-1\right)+\left(n-1\right)=\left(n-1\right)\left(n^2+1\right)\)
Để \(n^3-n^2+n-1\) là số nguyên tố
=> \(\orbr{\begin{cases}n-1=1\\n^2+1=1\end{cases}\Rightarrow}\orbr{\begin{cases}n=2\\n=0\end{cases}}\)
Thử lại với bài toán đầu xem có phù hợp không
Với n = 2: \(n^3-n^2+n-1=2^3-2^2+2-1=5\)là số nguyên tố nên n = 2 thỏa mãn.
Với n = 0 : \(n^3-n^2+n-1=-1\)không là số nguyên tố.
Vậy n = 2.