K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2022

Giải thích các bước giải:

a.Với m=6→x2−5x+6=0→(x−2)(x−3)=0→x∈{2,3}m=6→x2−5x+6=0→(x−2)(x−3)=0→x∈{2,3} 

b.Để phương trình có 2 nghiệm x1,x2x1,x2

→Δ=52−4m≥0→m≤254→Δ=52−4m≥0→m≤254

→{x1+x2=5x1x2=m→{x1+x2=5x1x2=m

Mà |x1−x2|=3→(x1−x2)2=9|x1−x2|=3→(x1−x2)2=9

→(x1+x2)2−4x1x2=9→(x1+x2)2−4x1x2=9

→52−4m=9→52−4m=9

→m=−4

1 tháng 1 2022

a, khi m=6 thì pt\(\Leftrightarrow x^2-5x+6=0\)

                           \(\Leftrightarrow\left(x^2-2x\right)-\left(3x-6\right)=0\\ \Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

b,Ta có:\(\Delta=\left(-5\right)^2-4.1.m=25-4m\)

để pt có 2 nghiệm x1, x2 phân biệt thì \(\Delta>0\) hay \(25-4m>0\Rightarrow m< \dfrac{25}{4}\)

Δ=(-2)^2-4(m-1)

=-4m+4+4

=-4m+8

Để phương trình có hai nghiệm phân biệt thì -4m+8>0

=>-4m>-8

=>m<2

x1^2+x2^2-3x1x2=2m^2+|m-3|

=>2m^2+|m-3|=(x1+x2)^2-5x1x2=2^2-5(m-1)=4-5m+5=-5m+9

TH1: m>=3

=>2m^2+m-3+5m-9=0

=>2m^2+6m-12=0

=>m^2+3m-6=0

=>\(m\in\varnothing\)

TH2: m<3

=>2m^2+3-m+5m-9=0

=>2m^2+4m-6=0

=>m^2+2m-3=0

=>(m+3)(m-1)=0

=>m=1 hoặc m=-3

\(\Delta=\left(-m+3\right)^2-4\cdot\left(-5\right)=m^2-6m+9+20=m^2-6m+29=\left(m-3\right)^2+20>0\)

=>Phương trình có hai nghiệm phân biệt

\(\Leftrightarrow m-3\in Z\Leftrightarrow m\in Z\)

a:

\(\text{Δ}=\left(m-1\right)^2-4\left(-2m-1\right)\)

\(=m^2-2m+1+8m+4=m^2+6m+5\)

Để (1) vô nghiệm thì (m+1)(m+5)<0

hay -5<m<-1

Để (1) có nghiệm thì (m+1)(m+5)>=0

=>m>=-1 hoặc m<=-5 

Để (1) có hai nghiệm phân biệt thì (m+1)(m+5)>0

=>m>-1 hoặc m<-5

b: Để (1) có hai nghiệm phân biệt cùng dương thì

\(\left\{{}\begin{matrix}\left[{}\begin{matrix}m>-1\\m< -5\end{matrix}\right.\\m>1\\m< -\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

NV
20 tháng 1 2022

c. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-2m-1\end{matrix}\right.\)

\(x_1^2+x_2^2=3\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=3\)

\(\Leftrightarrow\left(m-1\right)^2+2\left(2m+1\right)=3\)

\(\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\left(loại\right)\end{matrix}\right.\)

a: Thay m=1 vào pt, ta được:

\(x^2-x-2=0\)

=>(x-2)(x+1)=0

=>x=2 hoặc x=-1

b: \(\text{Δ}=\left(-m\right)^2-4\left(2m-4\right)\)

\(=m^2-8m+16\)

\(=\left(m-4\right)^2\)

Để phươg trình có hai nghiệm phân biệt thì m-4<>0

hay m<>4

Theo đề, ta có: \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\left(-m\right)^2-2\left(2m-4\right)\)

\(=m^2-4m+8\)

\(=\left(m-2\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi m=2

12 tháng 8 2019

Phương trình có hai nghiệm phân biệt x1, x2 ∆ = 52 – 4(3m + 1) > 0 21 – 12m > 0

 ó m < 21/12 

Với m < 21/12 , ta có hệ thức  x 1 + x 2 = 5 x 1 x 2 = 3 m + 1   V i e t '

⇒ | x 1 − x 2 | = ( x 1 − x 2 ) 2 = ( x 1 + x 2 ) 2 − 4 x 1 x 2 = 5 2 − 4 ( 3 m + 1 ) = 21 − 12 m = > | x 1 2 − x 2 2 | = | ( x 1 + x 2 ) ( x 1 − x 2 ) | = | 5 ( x 1 − x 2 ) | = 5 | x 1 − x 2 | = 5 21 − 12 m

Ta có:  | x 1 2 − x 2 2 | = 15 ⇔ 5 21 − 12 m = 15 ⇔ 21 − 12 m = 3 ⇔ 21 − 12 m = 9 ⇔ 12 m = 12 ⇔ m = 1 (t/m)

Vậy m = 1 là giá trị cần tìm

20 tháng 5 2021

a, Thay m=14 vào pt* có

\(x^2-20x+14+5=0\)

\(x^2-20x+19=0\)

⇔(x-1)(x-19)=0

\(\left[{}\begin{matrix}x-1=0\\x-19=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=1\\x=19\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=1\\x=19\end{matrix}\right.\)khi và chỉ khi m=14

 

 

20 tháng 5 2021

undefined

16 tháng 5 2021

`a)ac=-3<0`
`=>b^2-4ac>0`
`=>` phương trình luôn có hai nghiệm phân biệt với mọi m
`b)` áp dụng vi-ét:`x_1+x_2=m,x_1.x_2=-3`
`(x_1+6).(x_2+6) = 2019`
`<=>x_1.x_2+6(x_1+x_2)+36=2019`
`<=>6m-3+36=2019`
`<=>6m+33=2019`
`<=>6m=1986`
`<=>m=331`
Vậy `m=331` thì `(x_1+6).(x_2+6) = 2019`