K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2016

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)

7 tháng 11 2016

Đặt \(\frac{a}{b}\) =\(\frac{c}{d}\) =k => a=bk , c=dk

+) \(\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b.\left(k+1\right)}=\frac{k}{k+1}\)(1)

+)  \(\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d.\left(k+1\right)}=\frac{k}{k+1}\)(2)

Từ (1) và (2) => \(\frac{a}{a+b}=\frac{c}{c+d}\)

12 tháng 11 2022

Từ \(\dfrac{a}{b}\)      = \(\dfrac{c}{d}\) 

➜     ad   = bc

➜  ad-bd =   bc-bd

➜ (a-b)d  =   b(c-d)

➜ \(\dfrac{a}{b-a}\)  =  \(\dfrac{c}{d-c}\) (điều phải chứng minh)

16 tháng 10 2015

C2: Đặt \(\frac{a}{b}.\frac{c}{d}=k=>a=bk,c=dk\)

=>\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\)

\(\frac{a^2-b^2}{c^2-d^2}=\frac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\frac{b^2.k^2-b^2}{d^2.k^2-d^2}=\frac{b^2.\left(k^2-1\right)}{d^2.\left(k^2-1\right)}=\frac{b^2}{d^2}\)

=>\(\frac{ab}{cd}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)

=>\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

 

16 tháng 10 2015

\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=>\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{d}=>\frac{a^2}{c^2}=\frac{ab}{cd}\)

\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=>\frac{b}{d}.\frac{b}{d}=\frac{a}{c}.\frac{b}{d}=>\frac{b^2}{d^2}=\frac{ab}{cd}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

=>\(\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)

=>\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

17 tháng 10 2021

Đề thiếu rồi bạn

17 tháng 10 2021

để mình đăng lại

 

17 tháng 10 2018

bọn mk đg on tập về tỉ lệ thức đó 

17 tháng 10 2018

a)có:a/b=c/d=>a/c=b/d=a+b/c+d=a-b/c-d

b)có:a/b=c/d=a/b=3c/3d=a+3c/b+3d=a+c/b+d

c)có:a/b=c/d=>a/c=b/d=a+b/c+d

=>a/c=a+b/c+d=>a/a+b=c/c+d

áp dụng t/c DTSBN hết nha bạn

DD
7 tháng 10 2021

A) \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt,c=dt\)

\(\frac{a}{a+b}=\frac{bt}{bt+b}=\frac{t}{t+1},\frac{c}{c+d}=\frac{dt}{dt+d}=\frac{t}{t+1}\)

suy ra đpcm. 

\(\frac{a-b}{c-d}=\frac{bt-b}{dt-d}=\frac{b}{d},\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b}{d}\)

suy ra đpcm. 

B) \(\frac{a+3c}{b+3d}=\frac{a+c}{b+d}=\frac{\left(a+3c\right)-\left(a+c\right)}{\left(b+3d\right)-\left(b+d\right)}=\frac{2c}{2d}=\frac{c}{d}\)

\(\frac{a+3c}{b+3d}=\frac{a+c}{b+d}=\frac{\left(a+3c\right)-3\left(a+c\right)}{\left(b+3d\right)-3\left(b+d\right)}=\frac{-2a}{-2b}=\frac{a}{b}\)

suy ra đpcm. 

25 tháng 6 2017

 a+b+c+d=0 
=>a+b=-(c+d) 
=> (a+b)^3=-(c+d)^3 
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d) 
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d) 
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d)) 
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (đpcm)

25 tháng 6 2017

hey you, còn câu b,c?

29 tháng 6 2016

a) \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

<=> \(a^2-2a+1+b^2-2b+1+c^2-2c+1=0\)

<=> \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

Tổng 3 số không âm bằng 0 <=> a=b=c=1

b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc=3ab+3ac+3bc\)

<=> \(a^2-ab+b^2-bc+c^2-ac=0\)

<=> \(2a^2-2ab+2b^2-2bc+2c^2-2ac=0\)

<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Tổng 3 số không âm bằng 0 <=> a=b=c

30 tháng 6 2016

#NguyễnHoàngTiến ơi cảm ơn bạn đã giúp mình nhưng cho mình hỏi left với right trong bài của bạn có nghĩa là gì vậy hả, mình không hiểu lắm.