K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2016

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)

7 tháng 11 2016

Đặt \(\frac{a}{b}\) =\(\frac{c}{d}\) =k => a=bk , c=dk

+) \(\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b.\left(k+1\right)}=\frac{k}{k+1}\)(1)

+)  \(\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d.\left(k+1\right)}=\frac{k}{k+1}\)(2)

Từ (1) và (2) => \(\frac{a}{a+b}=\frac{c}{c+d}\)

12 tháng 11 2022

Từ \(\dfrac{a}{b}\)      = \(\dfrac{c}{d}\) 

➜     ad   = bc

➜  ad-bd =   bc-bd

➜ (a-b)d  =   b(c-d)

➜ \(\dfrac{a}{b-a}\)  =  \(\dfrac{c}{d-c}\) (điều phải chứng minh)

16 tháng 10 2015

C2: Đặt \(\frac{a}{b}.\frac{c}{d}=k=>a=bk,c=dk\)

=>\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\)

\(\frac{a^2-b^2}{c^2-d^2}=\frac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\frac{b^2.k^2-b^2}{d^2.k^2-d^2}=\frac{b^2.\left(k^2-1\right)}{d^2.\left(k^2-1\right)}=\frac{b^2}{d^2}\)

=>\(\frac{ab}{cd}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)

=>\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

 

16 tháng 10 2015

\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=>\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{d}=>\frac{a^2}{c^2}=\frac{ab}{cd}\)

\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=>\frac{b}{d}.\frac{b}{d}=\frac{a}{c}.\frac{b}{d}=>\frac{b^2}{d^2}=\frac{ab}{cd}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

=>\(\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)

=>\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

17 tháng 10 2018

bọn mk đg on tập về tỉ lệ thức đó 

17 tháng 10 2018

a)có:a/b=c/d=>a/c=b/d=a+b/c+d=a-b/c-d

b)có:a/b=c/d=a/b=3c/3d=a+3c/b+3d=a+c/b+d

c)có:a/b=c/d=>a/c=b/d=a+b/c+d

=>a/c=a+b/c+d=>a/a+b=c/c+d

áp dụng t/c DTSBN hết nha bạn

17 tháng 10 2021

Đề thiếu rồi bạn

17 tháng 10 2021

để mình đăng lại

 

14 tháng 8 2018

1/ Câu hỏi của Mai Tâm Anh - Toán lớp 7 - Học toán với OnlineMath dòng cuối bớt 2 phần sau là ok

2/ thiếu điều kiện a+b+c khác 0

 \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\left(a+b+c\ne0\right)\)

=>a/b=1 => a=b

b/c=1 => b=c

Do đó a=b=c

12 tháng 12 2016

Ta có : \(ad=bc\)

=> \(\frac{a}{c}=\frac{b}{d}\)

\(ADTCDTSBN,tađược\):
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{a+b}{c+d}\)

= > \(\frac{a-b}{c-d}=\frac{a+b}{c+d}\)

=> \(\frac{a-b}{a+b}=\frac{c-d}{c+d}\left(đpcm\right)\)