Tìm toạ độ giao điểm của đường tròn (C) :\(x^2+y^2-25=0\) và đường thẳng Δ: x+y-3=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
Vì đường tròn (C) cắt Δ tại hai điểm phân biệt A và B nên tọa độ điểm A và B là nghiệm của hệ phương trình:
Gọi H là trung điểm của AB suy ra IH ⊥ AB ⇒ IH ⊥ Δ.
Xét tam giác AIH vuông tại H ta có:
A H 2 + I H 2 = A I 2 ⇒ A H 2 = A I 2 - I H 2
x | 0 | 1 |
y=4x−3 | −3 | 1 |
x | 0 | 1 |
y=−x+2 | 2 | 1 |
Ta có phương trình hoàng độ giao điểm:
4x−3=−x+2
⇔5x=5
⇔x=1
⇒y=−x+2=−1+2=1
Vậy 2 đồ thị cắt nhau tại A(1;1)
\(x\) | \(0\) | \(1\) |
\(y=4x-3\) | \(-3\) | \(1\) |
\(x\) | \(0\) | \(1\) |
\(y=-x+2\) | \(2\) | \(1\) |
1 2 3 1 2 3 -1 -2 -3 y=4x-3 y=-x+2 A
Ta có phương trình hoàng độ giao điểm:
\(4x-3=-x+2\)
\(\Leftrightarrow5x=5\)
\(\Leftrightarrow x=1\)
\(\Rightarrow y=-x+2=-1+2=1\)
Vậy 2 đồ thị cắt nhau tại \(A\left(1;1\right)\)
a, Cách 1: Gọi O’ là điểm đối xứng với O qua (Δ)
⇒ OO’ ⊥ Δ tại trung điểm I của OO’.
+ (Δ) nhận là một vtpt ⇒ (Δ) nhận là một vtcp
OO’ ⊥ Δ ⇒ OO’ nhận là một vtpt. Mà O(0, 0) ∈ OO’
⇒ Phương trình đường thẳng OO’: x + y = 0.
+ I là giao OO’ và Δ nên tọa độ của I là nghiệm của hệ phương trình:
Cách 2: Gọi O’(x, y) là điểm đối xứng với O qua Δ.
+ Trung điểm I của OO’ là
+ (Δ) nhận là một vtpt ⇒ (Δ) nhận là một vtcp.
Từ (1) và (2) ta có hệ phương trình
Vậy O’(–2; 2).
b)
+ Vì O và A nằm cùng một nửa mặt phẳng bờ là đường thẳng Δ nên đoạn thẳng OA không cắt Δ.
O’ và A thuộc hai nửa mặt phẳng khác nhau bờ là đường thẳng Δ nên O’A cắt Δ.
Do O’ đối xứng với O qua đường thẳng ∆ nên ∆ là đường trung trực của đoạn thẳng OO’, với mọi M ∈ Δ ta có MO = MO’.
Độ dài đường gấp khúc OMA bằng OM + MA = O’M + MA ≥ O’A.
⇒ O’M + MA ngắn nhất khi O’M + MA = O’A ⇔ M là giao điểm của O’A và Δ.
⇒ O’A nhận là một vtcp
⇒ O’A nhận là một vtpt. Mà A(2; 0) ∈ O’A
⇒ Phương trình đường thẳng O’A : 1(x - 2) + 2(y - 0)= 0 hay x + 2y – 2 = 0.
M là giao điểm của O’A và Δ nên tọa độ điểm M là nghiệm của hệ :
Vậy điểm M cần tìm là
Trước hết ta thấy O, A nằm trên cùng một mặt phẳng bờ \(\Delta\).
Qua A kẻ đường thẳng d vuông góc với \(\Delta\) tại H.
Đường thẳng d có phương trình: \(x+y-2=0\)
\(\Rightarrow H\) có tọa độ là nghiệm hệ \(\left\{{}\begin{matrix}x-y+2=0\\x+y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\Rightarrow H=\left(0;2\right)\)
Gọi A' là điểm đối xứng với A qua d
\(\Rightarrow\left\{{}\begin{matrix}x_{A'}=2x_H-x_A=-2\\y_{A'}=2y_H-y_A=4\end{matrix}\right.\Rightarrow A'=\left(-2;4\right)\)
\(\Rightarrow OA'=2\sqrt{5}\)
Phương trình đường thẳng OA': \(2x+y=0\)
Khi đó: \(OM+MA=OM+MA'\ge OA'=2\sqrt{5}\)
\(min=2\sqrt{5}\Leftrightarrow M\) là giao điểm của \(\Delta\) và OA'
\(\Leftrightarrow M\) có tọa độ là nghiệm hệ \(\left\{{}\begin{matrix}x-y+2=0\\2x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\y=\dfrac{4}{3}\end{matrix}\right.\Rightarrow M=\left(-\dfrac{2}{3};\dfrac{4}{3}\right)\)
Lời giải:
Vì $M$ thuộc $\Delta$ nên $M$ có tọa độ $(a-2,a)$
Độ dài đường gấp khúc $OMA$ là:
$OM+MA=\sqrt{a^2+(a-2)^2}+\sqrt{(a-4)^2+a^2}$
$=\sqrt{2}.(\sqrt{(a-1)^2+1}+\sqrt{(2-a)^2+2^2})$
$\geq \sqrt{2}.\sqrt{(a-1+2-a)^2+(1+2)^2}$ (theo BĐT Mincopxky)
$=2\sqrt{5}$
Vậy $OMA$ min bằng $2\sqrt{5}$. Giá trị này đạt tại $a=\frac{4}{3}$
Vậy $M(\frac{-2}{3},\frac{4}{3})$
Giao điểm của \(\left(C\right)\) và \(\left(d\right)\) có tọa độ là nghiệm hệ: \(\left\{{}\begin{matrix}x^2+y^2-25=0\\x+y-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-2xy-25=0\\x+y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=-8\\x+y=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\dfrac{3+\sqrt{41}}{2}\\y=\dfrac{3-\sqrt{41}}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{3-\sqrt{41}}{2}\\y=\dfrac{3+\sqrt{41}}{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(\dfrac{3+\sqrt{41}}{2};\dfrac{3-\sqrt{41}}{2}\right)\\\left(\dfrac{3-\sqrt{41}}{2};\dfrac{3+\sqrt{41}}{2}\right)\end{matrix}\right.\)
Kết luận: Tọa độ giao điểm: \(\left\{{}\begin{matrix}\left(\dfrac{3+\sqrt{41}}{2};\dfrac{3-\sqrt{41}}{2}\right)\\\left(\dfrac{3-\sqrt{41}}{2};\dfrac{3+\sqrt{41}}{2}\right)\end{matrix}\right.\)