K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2016

A) Xét tam giác MDA và tam giác EDB có :
MD=DE( GT)

DA=DB( GT)

góc EDB=góc MDA ( góc đối đỉnh)

vậy tam giác MDA = tam giác EDB( C-G-C)

suy ra : DE=MA( hai canh tương ứng)

 chứng minh tương tự ta lại có : tam giác MDB= tam giác EDA 

suy ra : MB=AE( hai canh tương ứng)

mà ta lại có AM là đường trung tuyến ứng với cạnh huyền vậy AM=1/2BC=MB

vậy : MA=MB=AE=BE

suy ra : tứ giác AEBM là hình thoy

B) Xét tứ giác CMEA có :

MB song song với AE và bằng MB =AE ( theo phần a)

mà ta lại có : MC = MB

vậy AE song song với MC

AE=MC( chứng minh trên)

vậy tứ giác CMEA là HBH

 Mà I lại là trung điểm của đường chéo AM 

vậy I cũng là trung điểm của đường chéo CE

suy ra :  C,i.E thẳng hàng

C) tam giác ABC phải là tam giác vuông cân thì tứ giác AEBM mới là hình vuông 

 bở lẽ khi tam tam giác ABC vuuong cân thì ta sẽ có góc CBA = 45 độ

mà BA lại là đường phân giác của góc MBE ( theo phần a  tứ giác AEMB là hình thoi)

 nên góc MBE =45*2=90độ

mà phần a ta lại có  tứ giác AMBE là hình thoi 

vậy tứ giác AMBE là hình vuông

mình làm xong rồi nhớ mình nhé mình cảm ơn ^_^

câu a) bn ấy lm hơi dài nên mk có cách khác

c/m EBMA là hbh (2 đường chéo cắt tại trung điểm mỗi đường)

mà có AB vuông góc EM (t/c đối xứng)

vậy AEBM là hình thoi

30 tháng 12 2022

a: Xét tứ giác AEBM co

D là trung điểm chung của AB và ME

MA=MB

DO đó: AEBM là hình thoi

b: Xét tứ giác AEMC có

AE//MC

AE=MC

Do đó: AEMC là hình bình hành

=>AM cắt EC tại trung điểm của mỗi đường

=>E,I,C thẳng hàng

c: Để AEBM là hình vuông thì góc AMB=90 độ

=>AM vuông góc với BC

=>ΔABC cân tại A

=>AB=AC

a: Xét tứ giác AEBM có

D la trung điểm chung của AB và EM

MA=MB

Do đó: AEBM là hình thoi

b: Xét tứ giác AEMC có

AE//MC

AE=MC

Do đó: AEMC là hình bình hành

=>AM cắt EC tại trung điểm của mỗi đường

=>E,I,C thẳng hàng

c: Để AEBM là hình vuông thì góc AMB=90 độ

=>AM vuông góc với BC

=>ΔABC cân tại A

24 tháng 11 2021

QDSHYFT

29 tháng 5 2017

a)Vì E đối xứng với điểm M qua điểm D nên M,D,E thẳng hàng và DM = DE (1)

Áp dụng tính chất đường trung bình cho DBAC ta có DM//AC.

DABC vuông tại A nên CA ^ AB Þ MD ^ AB (2)

Từ (1) và (2) Þ E đối xứng với M qua đường thẳng AB.

b) Tứ giác AEMC là hình bình hành, tứ giác AEBM là hình thoi.

c) Chu vi tứ giác AEBM là 4BM = 8 (cm)

d) nếu tứ giác AEBM là hình vuông thì ME = AB mà ME = AC (do ACME là hình bình hành) Þ AC = AB Þ DABC vuông cân tại A.