K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2022

\(\Leftrightarrow-x+2x>9-5\)

\(\Leftrightarrow x>4\)

12 tháng 5 2022

`-x+5 > 9-2x`

`<=>-x+2x > 9-5`

`<=>x > 4`

Vậy `S={x|x > 4}`

24 tháng 2 2022

\(a)\left(x-2\right)\left(x^2+2x-3\right)\ge0.\)

Đặt \(f\left(x\right)=\left(x-2\right)\left(x^2+2x-3\right).\)

Ta có: \(x-2=0.\Leftrightarrow x=2.\\ x^2+2x-3=0.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=-3.\end{matrix}\right.\)

Bảng xét dấu:

x                   \(-\infty\)       -3       1       2     \(+\infty\)

\(x-2\)                    -      |    -   |   -   0   +

\(x^2+2x-3\)         +     0    -   0  +   |    +

\(f\left(x\right)\)                     -     0    +  0   -  0   +

Vậy \(f\left(x\right)\ge0.\Leftrightarrow x\in\left[-3;1\right]\cup[2;+\infty).\)

\(b)\dfrac{x^2-9}{-x+5}< 0.\)

Đặt \(g\left(x\right)=\dfrac{x^2-9}{-x+5}.\)

Ta có: \(x^2-9=0.\Leftrightarrow\left[{}\begin{matrix}x=3.\\x=-3.\end{matrix}\right.\)

\(-x+5=0.\Leftrightarrow x=5.\)

Bảng xét dấu:

x            \(-\infty\)      -3       3        5       \(+\infty\)

\(x^2-9\)            +   0   -   0   +   |    +

\(-x+5\)          +    |   +   |    +  0    -

\(g\left(x\right)\)              +    0   -   0   +  ||    -

Vậy \(g\left(x\right)< 0.\Leftrightarrow x\in\left(-3;3\right)\cup\left(5;+\infty\right).\)

25 tháng 5 2018

Giải:

\(x\left(2x-1\right)-8< 5-2x\left(1-x\right)\)

\(\Leftrightarrow2x^2-x-8< 5-2x+2x^2\)

\(\Leftrightarrow-x-8< 5-2x\)

\(\Leftrightarrow-x+2x< 5+8\)

\(\Leftrightarrow x< 13\)

Vậy ...

29 tháng 6 2023

\(a,\left(4x-1\right)\left(x^2+12\right)\left(-x+4\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-1>0\\x^2+12>0\left(LD\forall x\right)\\-x+4>0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x>1\\-x>-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{1}{4}\\x< 4\end{matrix}\right.\)

Vậy \(S=\left\{x|\dfrac{1}{4}< x< 4\right\}\)

\(b,\left(2x-1\right)\left(5-2x\right)\left(1-x\right)< 0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1< 0\\5-2x< 0\\1-x< 0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x< \dfrac{1}{2}\\x>\dfrac{5}{2}\\x< 1\end{matrix}\right.\)

Vậy \(S=\left\{x|1>x>\dfrac{5}{2}\right\}\)

14 tháng 4 2019

có 2 tường hợp :
-Trường hợp 1
x+\(\frac{1}{9}\)>0 <=> x>\(\frac{-1}{9}\)

2x-5<0 <=> 2x<-5 <=> x<\(\frac{-5}{2}\)

=> \(\frac{-5}{2}\)>x>\(\frac{-1}{9}\) (Vô lí, loại)

-Trường hợp 2

x+\(\frac{1}{9}\)<0 <=> x<\(\frac{-1}{9}\)

2x-5>0 <=> 2x>-5 <=> x>\(\frac{-5}{2}\)

=> \(\frac{-5}{2}\)<x<\(\frac{-1}{9}\) (Hợp lí, nhận)

Vậy tập nghiệm của BPT là {x/\(\frac{-5}{2}\)<x<\(\frac{-1}{9}\)}

\(\frac{-5}{2}\)

22 tháng 4 2022

Bài 1: 

c) |2x - 1| = x + 2

<=> 2x - 1 = +(x + 2) hoặc -(x + 2)

* 2x - 1 = x + 2      

<=> 2x - x = 2 + 1

<=> x = 3

* 2x - 1 = -(x + 2)

<=> 2x - 1 = x - 2

<=> 2x - x = -2 + 1

<=> x = -1

Vậy.....

NV
29 tháng 3 2021

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-\dfrac{9}{2}\\x\ne0\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{\left(3+\sqrt{9+2x}\right)^2.2x^2}{\left(3-\sqrt{9+2x}\right)^2\left(3+\sqrt{9+2x}\right)^2}< x+21\)

\(\Leftrightarrow\dfrac{\left(3+\sqrt{9+2x}\right)^2.2x^2}{4x^2}< x+21\)

\(\Leftrightarrow\left(3+\sqrt{9+2x}\right)^2< 2x+42\)

\(\Leftrightarrow x+9+3\sqrt{9+2x}< x+21\)

\(\Leftrightarrow\sqrt{9+2x}< 4\)

\(\Leftrightarrow9+2x< 16\Rightarrow x< \dfrac{7}{2}\)

Vậy \(\left\{{}\begin{matrix}-\dfrac{9}{2}\le x< \dfrac{7}{2}\\x\ne0\end{matrix}\right.\)

NV
21 tháng 9 2019

ĐKXĐ: \(1\le x\le5\)

TH1: với \(x>4\Rightarrow\left\{{}\begin{matrix}\sqrt{-x^2+6x-5}\ge0\\8-2x< 0\end{matrix}\right.\) \(\Rightarrow\) BPT luôn đúng

\(\Rightarrow4< x\le5\)

TH2: Với \(1\le x\le4\Rightarrow8-2x>0\)

\(\Leftrightarrow-x^2+6x-5>\left(8-2x\right)^2\)

\(\Leftrightarrow5x^2-38x+69< 0\) \(\Rightarrow3< x< \frac{25}{6}\)

Kết hợp ĐK \(\Rightarrow3< x\le4\)

Vậy nghiệm của BPT đã cho là \(3< x\le5\)

30 tháng 4 2018

\(\text{a) }\left(x^2-9\right)^2-9\left(x-3\right)^2=0\\ \Leftrightarrow\left(x+3\right)^2\left(x-3\right)^2-9\left(x-3\right)^2=0\\ \Leftrightarrow\left(x^2+6x+9-9\right)\left(x-3\right)^2=0\\ \Leftrightarrow\left(x^2+6x\right)\left(x-3\right)^2=0\\ \Leftrightarrow x\left(x+6\right)\left(x-3\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x+6=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x+6=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\\x=3\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{0;3;-6\right\}\)

\(\text{b) }\dfrac{3x^2+7x-10}{x}=0\\ ĐKXĐ:x\ne0\\ \Rightarrow3x^2+7x-10=0\\ \Leftrightarrow3x^2-3x+10x-10=0\\ \Leftrightarrow\left(3x^2-3x\right)+\left(10x-10\right)=0\\ \Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\\ \Leftrightarrow\left(3x+10\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x+10=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-10\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{10}{3}\\x=1\end{matrix}\right.\left(T/m\right)\)

Vậy phương trình có tập nghiệm \(S=\left\{-\dfrac{10}{3};1\right\}\)

\(\text{c) }x+\dfrac{2x+\dfrac{x-1}{5}}{3}=1-\dfrac{3x+\dfrac{1-2x}{3}}{5}\left(\text{Chữa đề}\right)\\ \Leftrightarrow15x+5\left(2x+\dfrac{x-1}{5}\right)=15-3\left(3x+\dfrac{1-2x}{3}\right)\\ \Leftrightarrow15x+10x+\left(x-1\right)=15-9x+\left(1-2x\right)\\ \Leftrightarrow15x+10x+x-1=15-9x+1-2x\\ \Leftrightarrow26x+11x=16+1\\ \Leftrightarrow37x=17\\ \Leftrightarrow x=\dfrac{17}{37}\\ \)

Vậy phương trình có nghiệm \(x=\dfrac{17}{37}\)