CMR : A=2+2^2+2^3+...+2^60 chia hết cho 21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=2+2^2+2^3+2^4+...+2^60
A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+..+(2^57+2^58+2^59+2^60)
A=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+..+2^57(1+2+2^2+2^3)
A=2.15+2^5.15+...+2^57.15
A=15(2+2^5+...+2^57)
=>A chia hết cho 15
A=2+2^2+2^3+2^4+...+2^60
A=(2+2^2+2^3+2^4+2^5+2^6)+(2^7+2^8+2^9+2^10+2^11+2^12)+....+(2^54+2^55+2^56+2^57+2^58+2^59+2^60)
A=2(1+2+2^3+2^4+2^5)+2^7(1+2+2^2+2^3+2^4+2^5)+...+2^54(1+2+2^2+2^3+2^4+2^5)
A=2.63+2^7.63+...+2^54.63
A=63(2+2^7+...+2^54)
A=21.3(2+2^7+...+2^54)
=>A chia hết cho 21
Ta co A=2+2^2+2^3+2^4+2^5+...+2^60
A=(2+2^2+2^3+2^4)+2^5+...+(2^57+2^58+2^59+2^60)
A=2(1+2+2^2+2^3)+...+2^57(1+2+2^2+2^3)
A=2*15+...+2^57*15
A=15(2+...+2^57) chia het cho 15=> chia het cho 3
Lai co : A=(2+2^2+2^3)+...+(2^58+2^59+2^60)
A=2(1+2+2^2)+...+2^58(1+2+2^2)
A=2*7+...+2^58*7
A=7*(2+...+2^58) chia het cho 7
A chia het cho ca 3 va 7 ma UCLN(3;7)=1
=>A chia het cho 21
nếu A chia hết cho 21 => A chia hết cho 3 và 7
Ta có
A=2(1+2)+2^3(1+2)+..............+2^59(1...
A=3(2+2^3+2^5+........+2^59)chia hết cho 3
Ta có :
A=2(1+2+2^2)+2^4(1+2+2^2)+...........+2...
A=7(2+2^4+2^7+..........+2^58)
=> A chia hết cho 3 và 7=> A chia hết
Vậy A chia hết cho 21
1 đúng nhé
\(A=2+2^2+2^3+\dots+2^{60}\\=(2+2^2)+(2^3+2^4)+(2^5+2^6)+\dots+(2^{59}+2^{60})\\=6+2^2\cdot(2+2^2)+2^4\cdot(2+2^2)+\dots+2^{58}\cdot(2+2^2)\\=6+2^2\cdot6+2^4\cdot6+\dots+2^{58}\cdot6\\=6\cdot(1+2^2+2^4+\dots+2^{58})\)
Vì \(6\cdot(1+2^2+2^4+\dots+2^{58})\vdots6\)
nên \(A\vdots6\)
A=2+2^2+2^3+...+2^60
A=(2+2^2+2^3+2^4)+....+(2^57+2^58+2^59+2^60)
A=15.2^0+....+15.2^56
A=15.(2^0+2^4+...+2^56) chia hết cho 15
Vậy A chia hết cho 15
chia hết cho 31 chứ nhỉ
góp 3 cái vào với nhau là chia hết cho 7 r
còn chia hết cho 21 thì tớ chưa nghĩ ra