cho hình vuông ABCD vẽ vao phía trong hvuông tia Ax,By sao cho BAx=15 độ, ABy=15 độ gọi M là giao điểm Ax và By CM tam giác MDC là tam giác đều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ta có : BAx = 1300
ABD = 500
-> BAx + ABD = 1300 + 500 = 1800
=> BAx và ABD là cặp góc cùng phía bù nhau
=> Ax // BD
b, Ax // BD => C1 = A45 ( So le trong )
=> C1 + A3 = A45 + A3 = A345 = 1300
Góc B = 50 độ
Vậy B + C1 + A3 = 180 độ
=> Tổng 3 góc trong tam giác ABC = 1800
c, A12345 = 180 0
A345 = 1300
=> A12 = 500
AF là phân giác của A12 => A1 = A2 = 500/2 = 250
AD là phân giác của A345 => A34 = A5 = 650
=> A3 + A34 = 250 + 650 = 900
ta có : FAD = 900
=> AF vuông góc với AC
a: Sửa đề:I là chân đường cao kẻ từ O xuống AB. Chứng minh H,O,K thẳng hàng
Xét tứ giác AHOI có
\(\widehat{AHO}+\widehat{AIO}=180^0\)
=>AHOI là tứ giác nội tiếp
=>\(\widehat{HOI}+\widehat{HAI}=180^0\)
Xét tứ giác OIBK có \(\widehat{OIB}+\widehat{OKB}=180^0\)
=>OIBK là tứ giác nội tiếp
=>\(\widehat{IOK}+\widehat{IBK}=180^0\)
AH//BK
=>\(\widehat{HAI}+\widehat{KBI}=180^0\)
\(\widehat{HOI}+\widehat{KOI}\)
\(=180^0-\widehat{HAI}+180^0-\widehat{KBA}\)
\(=360^0-180^0=180^0\)
=>H,O,K thẳng hàng
b: Xét ΔAHO vuông tại H và ΔAIO vuông tại I có
AO chung
\(\widehat{HAO}=\widehat{IAO}\)
Do đó: ΔAHO=ΔAIO
=>AH=AI
Xét ΔOIB vuông tại I và ΔOKB vuông tại K có
BO chung
\(\widehat{IBO}=\widehat{KBO}\)
Do đó: ΔOIB=ΔOKB
=>BI=BK
AH+BK=AI+IB=AB không đổi
\(\widehat{OBA}+\widehat{OAB}=\dfrac{1}{2}\left(\widehat{HAB}+\widehat{KBA}\right)\)
\(=\dfrac{1}{2}\cdot180^0=90^0\)
=>ΔOAB vuông tại O
=>ΔOAB nội tiếp đường tròn đường kính BA
\(\widehat{HIK}=\widehat{HIO}+\widehat{KIO}\)
\(=\widehat{HAO}+\widehat{OBK}\)
\(=\widehat{OAB}+\widehat{OBA}=90^0\)
=>ΔHIK vuông tại I
=>ΔHIK nội tiếp đường tròn đường kính HK