Cho x,y sao cho x^2 -y = y^2-x
Tính A=x^2 + 2xy + y^2 +3x -3y
Nhờ mọi người
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(x^2-y=y^2-x\)\(\Leftrightarrow x^2-y^2=-\left(x-y\right)\)\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=-\left(x-y\right)\)
\(\Leftrightarrow x+y=-1\)
do đó: \(A=\left(x+y\right)^2-3\left(x+y\right)\)\(=\left(-1\right)^2-3.\left(-1\right)\)\(=4\)
\(x^2-y=y^2-x< =>x^2-y-y^2+x=0< =>x^2-y^2-y+x=0\)
\(< =>\left(x-y\right)\left(x+y\right)+\left(x-y\right)=0< =>\left(x-y\right)\left(x+y+1\right)=0\)
\(< =>\orbr{\begin{cases}x-y=0\\x+y+1=0\end{cases}< =>\orbr{\begin{cases}x=y\\x+y=-1\end{cases}}}\)
Mà \(x\ne y=>x+y=-1\)
Vậy \(M=\left(x+y\right)^2-3\left(x+y\right)=\left(-1\right)^2-3.\left(-1\right)=1+3=4\)
Từ \(x^2-y=y^2-x\)\(\Rightarrow x^2-y^2+x-y=0\)
\(\Rightarrow\left(x-y\right)\left(x+y\right)+\left(x-y\right)=0\)
\(\Rightarrow\left(x-y\right)\left(x+y+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-y=0\\x+y+1=0\end{matrix}\right.\)\(\Rightarrow x+y=-1\) (vì \(x,y\) là 2 số khác nhau)
Khi đó \(A=x^2+2xy+y^2-3x-3y\)
\(=\left(x+y\right)^2-3\left(x+y\right)=\left(-1\right)^2-3\cdot\left(-1\right)=4\)
\(x^2-y=y^2-x\\ \Leftrightarrow x^2-y^2+x-y=0\\ \Leftrightarrow\left(x-y\right)\left(x+y+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-y=0\Rightarrow x=y\\x+y=-1\Rightarrow x=-1-y\end{matrix}\right.\)
khi đó:
\(\left[{}\begin{matrix}A=y^2+2y.y+y^2-3y-3y\\A=\left[\left(-1-y\right)+y\right]^2-3\left(-1-y+y\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}A=4y^2-6y\\A=4\end{matrix}\right.\)
đến đây thì mình chả bt trình bày sao nửa, mong bạn thông cảm