K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2022

a.1/8+3/8=1/2

b.2/5-1/8=11/40

\(x^4+4=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)

\(x^4+2x^2-24=\left(x^2+6\right)\cdot\left(x^2-4\right)=\left(x-2\right)\left(x+2\right)\left(x^2+6\right)\)

30 tháng 8 2021

đẳng cấp

 

Bài 1: 

a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)

\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)

\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)

\(\Leftrightarrow-12x^2+14x+13=0\)

\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)

b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)

\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)

hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)

12 tháng 7 2021

ai giúp mik vs

23 tháng 6 2021

1/ 

a, \(A=\dfrac{2}{3}+\dfrac{3}{4}.\left(-\dfrac{4}{9}\right)=\dfrac{2}{3}-\dfrac{1}{3}=\dfrac{1}{3}\)

b, \(B=2\dfrac{3}{11}.\dfrac{11}{12}.\left(-2,2\right)=\dfrac{25}{11}.\dfrac{11}{12}.\left(-\dfrac{11}{5}\right)=-\dfrac{55}{12}\)

c, \(C=\left(\dfrac{3}{4}-0,2\right):\left(0,4-\dfrac{4}{5}\right)=\left(\dfrac{3}{4}-\dfrac{1}{5}\right):\left(\dfrac{2}{5}-\dfrac{4}{5}\right)=\dfrac{11}{20}:\left(-\dfrac{2}{5}\right)=-\dfrac{11}{8}\)

2/ 

a, \(\dfrac{11}{12}-x=\dfrac{2}{3}+\dfrac{1}{4}\\ \Rightarrow\dfrac{11}{12}-x=\dfrac{11}{12}\\ \Rightarrow x=0\)

b, \(2x\left(x-\dfrac{1}{7}\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=0\\x-\dfrac{1}{7}=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=0\\x=\dfrac{1}{7}\end{matrix}\right.\)

c, \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\\ \Rightarrow\dfrac{1}{4}:x=-\dfrac{7}{20}\\ \Rightarrow x=-\dfrac{5}{7}\)

24 tháng 6 2021

câu b bài 1 là 1 1/12 là hỗn số nhen

15 tháng 11 2019

1) 

=a^4+2a^2+1-a^2

=(a^2+1)^2-a^2

=(a^2-a+1)(a^2+a+1)

2)

=a^4+4b^4-4a^2b^2

=(a^2+2b^2)^2-4a^2b^2

=(a^2-2ab+2b^2)(a^2+2ab+2b^2)

3)

=(8x^2+1)^2-16x^2

=(8x^2-4x+1)(8x^2+4x+1).

4)

=x^5+x^4+x^3-x^3+1

=x^2(x^2+x+1)-(x-1)(x^2+x+1)

=(x^2-x+1)(x^2+x+1)

5).

=x^7-x+x^2+x+1

=x(x^6-1)+x^2+x+1

=x(x^3-1)(x^3+1)+x^2+x+1

=x(x-1)(x^2+x+1)(x^3+1)+x^2+x+1

=(x^2+x+1)[(x^2-x)(x^3+1)+1]

6)

=x^8-x^2+x^2+x+1

=x^2(x-1)(x^2+x+1)(x^3+1)+x^2+x+1

Xong nhóm x^2+x+1 vào.

7)

=x^4-(2x-1)^2

=(x^2-2x+1)(x^2+2x-1)

8)

=(a^8+b^8)^2-a^8b^8

=(a^8-a^4b^4+b^8)(a^8+a^4b^4+b^8).

a: \(=\dfrac{x^2+3x+2-x^2+2x+8}{\left(x-2\right)\left(x+2\right)}=\dfrac{5x+10}{\left(x-2\right)\left(x+2\right)}=\dfrac{5}{x-2}\)

b: \(=\dfrac{x^2-4x+3-x^2-3x-2+8x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x-1}\)

c: \(=\dfrac{x+2}{x\left(x-2\right)}+\dfrac{2}{x\left(x+2\right)}+\dfrac{3x+2}{\left(x+2\right)\left(x-2\right)}\)

\(=\dfrac{x^2+2x+2x-4+3x+2}{x\left(x-2\right)\left(x+2\right)}=\dfrac{x^2+7x-2}{x\left(x-2\right)\left(x+2\right)}\)

4 tháng 1 2022

a,

\(\dfrac{x+1}{x-2}-\dfrac{x}{x+2}+\dfrac{8}{x^2-4}\\ =\dfrac{x^2+3x+2-x^2+2x+8}{\left(x-2\right)\left(x+2\right)}=\dfrac{5x+10}{\left(x-2\right)\left(x+2\right)}=\dfrac{5\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{5}{x-2}\)

b,

\(\dfrac{x-3}{x+1}-\dfrac{x+2}{x-1}+\dfrac{8x}{x^2-1}\\ =\dfrac{x^2-4x+3-x^2-3x-2+8x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{1}{x-1}\)

 

1 tháng 10 2021

\(a,\Leftrightarrow\left|x+\dfrac{2}{5}\right|=\dfrac{7}{4}\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{2}{5}=\dfrac{7}{4}\left(x\ge-\dfrac{2}{5}\right)\\x+\dfrac{2}{5}=-\dfrac{7}{4}\left(x< -\dfrac{2}{5}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{27}{20}\left(tm\right)\\x=-\dfrac{43}{20}\left(tm\right)\end{matrix}\right.\)

\(b,\Leftrightarrow\left|x-\dfrac{13}{10}\right|=\dfrac{13}{10}\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{13}{10}=\dfrac{13}{10}\left(x\ge\dfrac{13}{10}\right)\\x-\dfrac{13}{10}=-\dfrac{13}{10}\left(x< \dfrac{13}{10}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{13}{5}\left(tm\right)\\x=0\left(tm\right)\end{matrix}\right.\)

\(c,\Leftrightarrow\left|\dfrac{3}{4}-\dfrac{1}{2}x\right|=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}\dfrac{3}{4}-\dfrac{1}{2}x=\dfrac{1}{2}\left(x\le\dfrac{3}{2}\right)\\\dfrac{1}{2}x-\dfrac{3}{4}=\dfrac{1}{2}\left(x>\dfrac{3}{2}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\x=\dfrac{5}{2}\left(tm\right)\end{matrix}\right.\)

\(d,\Leftrightarrow\left|5-2x\right|=4\Leftrightarrow\left[{}\begin{matrix}5-2x=4\left(x\le\dfrac{5}{2}\right)\\2x-5=4\left(x>\dfrac{5}{2}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\x=\dfrac{9}{2}\left(tm\right)\end{matrix}\right.\)

\(đ,\Leftrightarrow\left\{{}\begin{matrix}x-3,5=0\\x-1,3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3,5\\x=1,3\end{matrix}\right.\left(vô.lí\right)\Leftrightarrow x\in\varnothing\)

\(e,\Leftrightarrow\left\{{}\begin{matrix}x-2021=0\\x-2022=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2021\\x=2022\end{matrix}\right.\left(vô.lí\right)\Leftrightarrow x\in\varnothing\)

\(f,\Leftrightarrow\left|x\right|=\dfrac{1}{3}-x\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}-x\left(x\ge0\right)\\x=x-\dfrac{1}{3}\left(x< 0\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}\left(tm\right)\\0x=-\dfrac{1}{3}\left(vô.lí\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{1}{6}\)

\(g,\Leftrightarrow\left[{}\begin{matrix}x-2=x\left(x\ge2\right)\\2-x=x\left(x< 2\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}0x=2\left(vô.lí\right)\\x=1\left(tm\right)\end{matrix}\right.\Leftrightarrow x=1\)

21 tháng 3 2016

het thoirui pan oi

a: Ta có: \(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x-5\right)=-4\)

\(\Leftrightarrow x^2+5x+6-x^2+7x-10=-4\)

\(\Leftrightarrow12x=0\)

hay x=0

b: Ta có: \(\left(x+1\right)\left(x^2-x+1\right)-x\left(x-3\right)\left(x+3\right)=8\)

\(\Leftrightarrow x^3+1-x^3+9x=8\)

\(\Leftrightarrow9x=7\)

hay \(x=\dfrac{7}{9}\)

c: Ta có: \(4x^2-9=\left(3x+1\right)\left(2x-3\right)\)

\(\Leftrightarrow\left(3x+1\right)\left(2x-3\right)-\left(2x-3\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(3x+1-2x-3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=2\end{matrix}\right.\)

13 tháng 11 2019

1, a4 + a2 + 1 

= a4 + 2a2 + 1 - a2 

= (a2)2 + 2a2 + 1 - a2 

= (a2 + 1)2 - a2 

= (a2 + 1 - a)(a2 + 1 + a)

2, a4 + 4b4 

= (a2)2 + 2. a2 . b2 + (2b)2 - a2 . b2 

= (a2 + 2b)2 - (ab)2 

= (a2 + 2b - ab)(a2 + 2b + ab)

3, 64x4 + 1 

= (8x2)2​ + 16x2​ + 1 - 16x2​ 

= (8x2 + 1)2​ - (4x)2​ 

= (8x2 + 1 - 4x)(8x2 + 1 + 4x)

4, x5 + x4 + 1 

= x5 + x4 + x3 - x3 - x2 - x + x + x2 + 1 

= (x5 + x4 + x3) - (x3 + x2 + x) + (x + x2 + 1)

= x3(x2 + x + 1) - x(x2 + x + 1) + (x2 + x + 1)

= (x2 + x + 1)(x3 - x + 1)

5, x7 + x2 + 1 

= x7 – x + x2 + x + 1

= x(x6 – 1) + (x2 + x + 1) 

= x(x3 – 1)(x3 + 1) + (x2 + x + 1)

= x(x3 + 1)(x – 1) (x2 + x + 1) + (x2 + x + 1) 

= (x2 + x + 1)[ x(x3 + 1)(x – 1) + 1]

= (x2 + x + 1)(x5 – x4 + x3 – x2 + x – 1)

6, x8 + x + 1 

= x8 + x7 + x6 - x7 - x6 - x5 + x5 + x4 + x3 - x4 - x3 - x2 + x2 + x + 1

= (x8 + x7 + x6) -  (x7 + x6 + x5) + (x5 + x4 + x3 ) - (x4 + x3 + x2) + (x2 + x + 1)

= x6(x2 + x + 1) - x5(x2 + x + 1) + x3(x2 + x + 1) - x2(x2 + x + 1) + (x2 + x + 1)

= (x2 + x + 1)(x6 - x5 + x3 - x2 + 1)

7, x4 - 4x2 + 4x - 1 

= x4 - (4x2 - 4x + 1)

= (x2)2 - (2x - 1)2

= (x2 - 2x + 1)(x2 + 2x - 1)

= (x - 1)2 (x2 + 2x - 1)

8, a16 + a8b8 + b16

=  (a16 + 2a8b8 + b16) - a8b8 

= (a8 + b8)2 - (a4b4)2

= (a8 + b8 - a4b4)(a8 + b8 + a4b4)

= (a8 + b8 - a4b4)[(a8 + b8 + 2a4b4) - a4b4]

= (a8 + b8 - a4b4)[(a4 + b4)2 - (a2b2)2]

= (a8 + b8 - a4b4)(a4 + b4 - a2b2)(a4 + b4 + a2b2)

= (a8 + b8 - a4b4)(a4 + b4 - a2b2)[(a4 + b4 + 2a2b2) - a2b2]

= (a8 + b8 - a4b4)(a4 + b4 - a2b2)[(a2 + b2) - (ab)2]

= (a8 + b8 - a4b4)(a4 + b4 - a2b2)(a2 + b2 - ab)(a2 + b2 + ab)