Vẽ 3 Đường thẳng d1,d2,d3 thỏa mãn điều kiện: cắt nhau tại 1 điểm, cắt nhau tại 3 điểm, không cắt nhau
Ai giải nhanh kèm theo cách giải đúng mình tick cho nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để hai đường thẳng song song nhau thì:
\(\left\{\begin{matrix} k+3=4\\ m+1\neq 3-m\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} k=1\\ m\neq 1\end{matrix}\right.\)
Để hai đt cắt nhau thì: \(\left\{\begin{matrix} k+3\neq 4\\ m\in\mathbb{R}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} k\neq 1\\ m\in\mathbb{R}\end{matrix}\right.\)
Để hai đt trùng nhau thì: \(\left\{\begin{matrix} k+3=4\\ m+1=3-m\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} k=1\\ m=1\end{matrix}\right.\)
Để hai đt cắt nhau tại 1 điểm trên trục tung thì:
PT hoành độ giao điểm $(k+3)x+m+1=4x+3-m$ nhận $x=0$ là nghiệm
$\Leftrightarrow x(k-1)+(2m-2)=0$ nhận $x=0$ là nghiệm
$\Leftrightarrow 2m-2=0$
$\Leftrightarrow m=1$
Vậy $m=1$ và $k\in\mathbb{R}$ bất kỳ.
Để 2 đt vuông góc thì $(k+3).4=-1$ và $m$ bất kỳ
$\Leftrightarrow k=\frac{-13}{4}$ và $m$ bất kỳ.
Để hai đường thẳng d1; d2 cắt nhau tại một điểm nằm trên d3 khi và chỉ khi 3 đường thẳng d1; d2; d3 đồng quy.
Giao điểm của d1 và d3 là nghiệm hệ phương trình:
x − 2 y + 1 = 0 x + y − 5 = 0 ⇔ x = 3 y = 2 ⇒ A ( 3 ; 2 )
Do 3 đường thẳng này đồng quy nên điểm A thuộc d2. Suy ra:
3m - (3m-2).2 + 2m – 2= 0
⇔ 3m – 6m + 4 + 2m – 2 = 0 ⇔ - m + 2 = 0 ⇔ m= 2
Với m= 2 thì đường thẳng d2 : 2x - 4y + 2= 0 hay x- 2y + 1 =0 . Khi đó, đường thẳng d1 và d2 trùng nhau.
Vậy không có giá trị nào của m thỏa mãn.
ĐÁP ÁN D
Tọa độ I là nghiệm của hệ pt: \(\left\{{}\begin{matrix}y=4x+7\\y=1-2x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}0=6x+6\\y=1-2x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1-2\left(-1\right)=3\end{matrix}\right.\)
\(\Rightarrow\) I(-1;3)
\(I\in\left(d3\right)\Rightarrow3=\left(m+1\right)\left(-1\right)+2m-1\)
\(\Leftrightarrow m=5\)
Vậy....
Toạ độ giao điểm của (d1) và (d2) là nghiệm của hệ phương trình:
\(\hept{\begin{cases}y=-x+1\\y=x-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-1=-x+1\\y=x-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x=2\\y=x-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}\)
Do đó giao điểm của (d1) và (d2) là điểm (1;0)
Để (d1) cắt (d2) tại điểm thuộc (d3) thì (1;0) \(\in\)(d3)
Thay x=1; y=0 vào phương trình đường thẳng (d3), ta được:
-a + \(a^3-a^2+1\)= 0
\(\Leftrightarrow a^2\left(a-1\right)-\left(a-1\right)=0\)
\(\Leftrightarrow\left(a^2-1\right)\left(a-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2\left(a+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(a-1\right)^2=0\\a+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=-1\end{cases}}\)
Vậy a=\(\pm1\)thì (d1) cắt (d2) tại một điểm thuộc (d3)