Cho tam giác ABC, góc A nhọn.
Chứng minh
\(BC^2=AB^2+AC^2-2\times AB\times AC\cos A\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(\cos\alpha=\dfrac{4}{5}\)
\(\tan\alpha=\dfrac{3}{4}\)
\(\cot\alpha=\dfrac{4}{3}\)
b: \(\dfrac{AB\cdot BC}{2}\cdot sinB\)
\(=\dfrac{AB\cdot BC}{2}\cdot\dfrac{AC}{BC}=\dfrac{AB\cdot AC}{2}\)
\(=S_{ABC}\)
a: Xét ΔABD vuông tại A có tan ABD=AD/AB
Xét ΔCBA có BD là phân giác
nên AD/AB=CD/BC
=>\(\dfrac{AD}{AB}=\dfrac{CD}{BC}=\dfrac{AD+CD}{AB+BC}=\dfrac{AC}{AB+BC}\)
=>\(tan\left(ABD\right)=\dfrac{AC}{AB+BC}\)
Sửa đề: \(BE=BC\cdot cos^3B\)
Xét ΔAHB vuông tại H có \(cosB=\dfrac{BH}{BA}\)
Xét ΔABC vuông tại A có \(cosB=\dfrac{BA}{BC}\)
Xét ΔBEH vuông tại E có \(cosB=\dfrac{BE}{BH}\)
\(cos^3B=cosB\cdot cosB\cdot cosB\)
\(=\dfrac{BH}{BA}\cdot\dfrac{BA}{BC}\cdot\dfrac{BE}{BH}\)
\(=\dfrac{BE}{BC}\)
=>\(BE=BC\cdot cos^3B\)
ΔAHB vuông tại H có HD là đường cao
nên AD*AB=AH^2
ΔAHC vuông tại H có HE là đườg cao
nên AE*AC=AH^2
=>AD*AB=AE*AC
=>AD/AC=AE/AB
Xét ΔABC vuông tại A có tan B=AC/AB=căn 3
=>góc B=60 độ
=>góc C=30 độ
BC=căn AB^2+AC^2=8(cm)
\(S_{ABC}=\dfrac{1}{2}\cdot4\cdot4\sqrt{3}=8\sqrt{3}\left(cm^2\right)\)
\(AH=AB\cdot\dfrac{AC}{BC}=\dfrac{4\cdot4\sqrt{3}}{8}=2\sqrt{3}\left(cm\right)\)
Xét ΔADE và ΔACB có
AD/AC=AE/AB
góc DAE chung
=>ΔADE đồng dạng với ΔACB
=>S ADE/S ACB=(AD/AC)^2
\(=\left(\dfrac{AH^2}{AB}:AC\right)^2=\left(\dfrac{AH^2}{AB\cdot AC}\right)^2=\left(\dfrac{12}{4\cdot4\sqrt{3}}\right)^2=\dfrac{3}{16}\)
\(\left(1-cos^2B\right)\cdot sin^2C=sin^2B\cdot sin^2C\)
\(=\left(sinB\cdot sinC\right)^2=\left(\dfrac{AB}{BC}\cdot\dfrac{AC}{BC}\right)^2=\left(\dfrac{4}{8}\cdot\dfrac{4\sqrt{3}}{8}\right)^2=\dfrac{3}{16}\)
=>\(S_{ADE}=S_{ABC}\cdot\left(1-cos^2B\right)\cdot sin^2C\)