K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: \(BE=BC\cdot cos^3B\)

Xét ΔAHB vuông tại H có \(cosB=\dfrac{BH}{BA}\)

Xét ΔABC vuông tại A có \(cosB=\dfrac{BA}{BC}\)

Xét ΔBEH vuông tại E có \(cosB=\dfrac{BE}{BH}\)

\(cos^3B=cosB\cdot cosB\cdot cosB\)

\(=\dfrac{BH}{BA}\cdot\dfrac{BA}{BC}\cdot\dfrac{BE}{BH}\)

\(=\dfrac{BE}{BC}\)

=>\(BE=BC\cdot cos^3B\)

15 tháng 11 2023

a: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=48/10=4,8(cm)

Xét ΔABC vuông tại A có

\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)

nên \(\widehat{C}\simeq37^0\)

ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ABC}=90^0-37^0=53^0\)

b: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC=MB=BC/2

Xét ΔMAC có MA=MC

nên ΔMAC cân tại M

=>\(\widehat{MAC}=\widehat{MCA}=\widehat{ACB}\left(1\right)\)

\(\widehat{ACB}+\widehat{ABC}=90^0\)(ΔABC vuông tại A)

\(\widehat{HAB}+\widehat{ABH}=90^0\)(ΔABH vuông tại H)

Do đó: \(\widehat{ACB}=\widehat{HAB}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{MAC}=\widehat{HAB}\)

c: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>\(\widehat{AFE}=\widehat{AHE}\)

mà \(\widehat{AHE}=\widehat{ABC}\left(=90^0-\widehat{HAB}\right)\)

nên \(\widehat{AFE}=\widehat{ABC}\)

\(\widehat{AFE}+\widehat{MAC}\)

\(=\widehat{ABC}+\widehat{ACB}=90^0\)

=>FE vuông góc AM tại K

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}BH=\dfrac{6^2}{10}=3,6\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)

Xét ΔHAB vuông tại H có HE là đường cao

nên \(HA^2=AE\cdot AB\)

=>\(AE\cdot6=4,8^2\)

=>\(AE=3,84\left(cm\right)\)

Xét ΔHAC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\)

=>\(AF=\dfrac{4.8^2}{8}=2,88\left(cm\right)\)

Xét ΔAEF vuông tại A có AK là đường cao

nên \(\dfrac{1}{AK^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\)

=>\(\dfrac{1}{AK^2}=\dfrac{1}{2,88^2}+\dfrac{1}{3.84^2}\)

=>AK=2,304(cm)

Bài 2: 

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot EB=HE^2\)

b: Xét tứ giác AEHF có

\(\widehat{FAE}=\widehat{AFH}=\widehat{AEH}=90^0\)

Do đó: AEHF là hình chữ nhật

Suy ra: FE=AH và \(\widehat{FHE}=90^0\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot FC=FH^2\)

Áp dụng định lí Pytago vào ΔFHE vuông tại H, ta được:

\(HF^2+HE^2=FE^2\)

\(\Leftrightarrow AH^2=AE\cdot EB+AF\cdot FC\)

19 tháng 8 2021

1) Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông, ta được:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{9+16}=\sqrt{25}=5\)(cm)

BH \(=\dfrac{AB^2}{BC}=\dfrac{9}{5}\)(cm)

\(CH=\dfrac{AC^2}{BC}=\dfrac{16}{5}\left(cm\right)\)

\(AH=\dfrac{AB.AC}{BC}=\dfrac{12}{5}\left(cm\right)\)

2) a) Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông, ta được điều phải chứng minh.

b)Chứng minh tương tự câu a), ta được:

AF.FC=HF^2

Lại có:

Tứ giác AFHE có 3 góc vuông nên từ giác AFHE là hình chữ nhật.

Suy ra, HF = AE

Suy ra, AF.FC=AE^2

Mà AE.EB=HE^2

Nên AF.FC+AE.EB=AE^2+HE^2=AH^2(đpcm)

3) Áp dụng hệ thức về cạnh và góc trong tam giác, ta được:

\(BE=\cos B.BH=\cos B.\left(\cos B.AB\right)=\cos^2B.AB=\cos^2B.\left(\cos B.BC\right)=\cos^3.BC\left(đpcm\right)\)

a: BC=căn 6^2+8^2=10cm

BH=AB^2/BC=3,6cm

CH=10-3,6=6,4cm

sin ABC=AC/BC=4/5

=>góc ABC=53 độ

b: ΔAHB vuông tại H có HE là đường cao

nên AE*AB=AH^2

ΔAHC vuông tại H có HF là đường cao

nên AF*AC=AH^2

=>AE*AB=AF*AC

=>AE/AC=AF/AB

=>ΔAEF đồng dạng với ΔACB

c: góc AEH=góc AFH=góc FAE=90 độ

=>AEHF là hình chữ nhật

góc KAC+góc AFE

=góc AHE+góc KCA

=góc ABC+góc ACB=90 độ

=>AK vuông góc EF

26 tháng 9 2018

A B C H E F O

a) \(\Delta\)ABC vuông tại A có trung tuyến AO nên ^OAC = ^OCA. Do ^OCA = ^BAH (Cùng phụ ^HAC)

Nên ^OAC = ^BAH = ^ AEF (Do tứ giác AEHF là hcn)

Mà ^AEF + ^AFE = 900 => ^OAC + ^AFE = 900 => OA vuông góc EF (đpcm).

b) Biến đổi tương đương:

\(BE\sqrt{CH}+CF\sqrt{BH}=AH\sqrt{BC}\)

\(\Leftrightarrow BE\sqrt{BC.CH}+CF\sqrt{BC.BH}=AB.BC\)(Nhân mỗi vế với \(\sqrt{BC}\))

\(\Leftrightarrow BE\sqrt{AC^2}+CF\sqrt{AB^2}=AB.BC\) (Hệ thức lương)

\(\Leftrightarrow BE.AC+CF.AB=AB.BC\)

\(\Leftrightarrow BH.AH+CH.AH=AB.BC\)(Vì \(\Delta\)EBH ~ \(\Delta\)HAC; \(\Delta\)FHC ~ \(\Delta\)HBA)

\(\Leftrightarrow AH\left(BH+CH\right)=AB.BC\)

\(\Leftrightarrow AH.BC=AB.AC\) (luôn đúng theo hệ thức lượng)

Vậy có ĐPCM.

29 tháng 10 2023

1: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=3^2+4^2=25\)

=>BC=5(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot5=3\cdot4=12\)

=>AH=2,4(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}BH\cdot BC=BA^2\\CH\cdot CA=CA^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{3^2}{5}=1,8\left(cm\right)\\CH=\dfrac{4^2}{5}=3,2\left(cm\right)\end{matrix}\right.\)

2: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>AH=EF

Xét ΔHAB vuông tại H có HE là đường cao

nên \(AE\cdot EB=HE^2\)

Xét ΔHAC vuông tại H có HF là đường cao

nên \(AF\cdot FC=HF^2\)

\(AE\cdot EB+AF\cdot FC=HE^2+HF^2=EF^2=AH^2\)

3: Xét ΔBAC vuông tại B có \(cosB=\dfrac{BA}{BC}\)

Xét ΔBHA vuông tại H có \(cosB=\dfrac{BH}{BA}\)

Xét ΔBEH vuông tại E có \(cosB=\dfrac{BE}{BH}\)

\(cos^3B=cosB\cdot cosB\cdot cosB\)

\(=\dfrac{BA}{BC}\cdot\dfrac{BH}{BA}\cdot\dfrac{BE}{BH}=\dfrac{BE}{BC}\)

=>\(BE=BC\cdot cos^3B\)