Chứng minh rằng : \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+....+\frac{1}{17}<2\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
LG
0
DT
0
DT
0
VT
4
30 tháng 5 2015
1/5 + 1/6 + 1/7 + 1/8 + 1/9 + 1/10 < 1/5 + 1/5 + 1/5 + 1/5 + 1/5 + 1/5 = 6/5 (1)
1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1/16 + 1/17 < 1/11 + 1/11 + 1/11 + 1/11 +1/11 + 1/11 + 1/11 = 7/11 (2)
Từ (1) và (2) => :
A < 6/5 + 7/11 = 101/55 < 110/55 = 2
30 tháng 5 2015
giang ho dai ca copy bài ! Làm gì 50 giây đã gõ xong rồi !
NM
0
Ta có : Đặt biểu thức trên = S\(\left(\frac{1}{5}+\frac{1}{6}+....+\frac{1}{9}\right)+\left(\frac{1}{10}+\frac{1}{11}+....+\frac{1}{17}\right)<\frac{1}{5}\times5+\frac{1}{8}\times8\)
\(S<\frac{5}{5}+\frac{8}{8}=1+1=2\)
\(\Rightarrow S<2\)
Ta có :
1/5 + 1/6 + 1/7 + 1/8 + 1/9 + 1/10 < 1/5 + 1/5 + 1/5 + 1/5 + 1/5 + 1/5 = 6/5 (1)
1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1/16 + 1/17 < 1/11 + 1/11 + 1/11 + 1/11 +1/11 + 1/11 + 1/11 = 7/11 (2)
Từ (1) và (2) => : A < 6/5 + 7/11 = 101/55 < 110/55 = 2