Cho hàm số $y=a x^{2}$.
a) Xác định hệ số $a$ biết rằng đồ thị của hàm số cắt đường thẳng $y=2 x$ tại điểm $A$ có hoành độ bằng 1 .
b) Vẽ đồ thị của hàm số $y=2 x$ và đồ thị hàm số $y=a x^{2}$ với giá trị của $a$ vừa tìm được ở câu a) trên cùng một mặt phẳng tọa độ.
c) Dựa vào đồ thị, hãy xác định tọa độ giao điểm thứ hai (khác $A$ ) của hai đồ thị vừa vẽ trong câu b).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 10:
a:
b:
y=-x+2
=>y+x-2=0
=>x+y-2=0
Khoảng cách từ O đến đến đường thẳng AB sẽ bằng khoảng cách từ O đến (d): y=-x+2
=>Khoảng cách từ O đến đường thẳng AB là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot1+0\cdot1+\left(-2\right)\right|}{\sqrt{1^2+1^2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)
Bài 9:
a: Vì hệ số góc của hàm số y=ax+b là 2 nên a=2
=>y=2x+b
Thay x=1 và y=-1 vào y=2x+b, ta được:
\(b+2\cdot1=-1\)
=>b+2=-1
=>b=-3
vậy: y=2x-3
b: Vì đồ thị của hàm số y=ax+b song song với đường thẳng y=-3x+2 nên \(\left\{{}\begin{matrix}a=-3\\b\ne2\end{matrix}\right.\)
Vậy: y=-3x+b
Thay x=0 và y=1 vào y=-3x+b, ta được:
\(b-3\cdot0=1\)
=>b-0=1
=>b=1
Vậy: y=-3x+1
Bài 9:
a. Hệ số góc của đths là $2$, tức $a=2$
ĐTHS đi qua điểm $A(1;-1)$ nên:
$-1=a.1+b$
$\Leftrightarrow -1=2.1+b\Rightarrow b=-3$
Vậy hàm số cần tìm là $y=2x-3$
b.
ĐTHS song song với $y=-3x+2$ nên $a=-3$
ĐTHS cần tìm cắt trục tung tại điểm có tung độ $1$, tức là nó đi qua điểm $(0;1)$
$\Rightarrow 1=a.0+b\Rightarrow b=1$
Vậy đths cần tìm là $y=-3x+1$
a: Thay x=0 và y=2 vào (d), ta được:
a=2
b: Thay x=-1 và y=0 vào (d), ta được:
\(-\left(a-2\right)+a=0\)
\(\Leftrightarrow2=0\)(vô lý)
a) Với a = 2 hàm số có dạng y = 2x + b.
Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 1,5 khi đó tung độ bằng 0 nên:
0 = 2.1,5 + b => b = -3
Vậy hàm số là y = 2x – 3
b) Với a = 3 hàm số có dạng y = 3x + b.
Đồ thị hàm số đi qua điểm (2; 2), nên ta có:
2 = 3.2 + b => b = 2 – 6 = - 4
Vậy hàm số là y = 3x – 4
c) Đường thẳng y = ax + b song song với đường thẳng y = √3 x nên a = √3 và b ≠ 0. Khi đó hàm số có dạng y = √3 x + b
Đồ thị hàm số đi qua điểm (1; √3 + 5) nên ta có:
√3 + 5 = √3 . 1 + b => b = 5
Vậy hàm số là y = √3 x + 5
a: Thay x=-2 vào y=-3x+4, ta được:
y=6+4=10
Thay x=-2 và y=10 vào hàm số \(y=ax^2\), ta được:
\(4a=10\)
hay a=5/2
c: (P): y=5/2x2
(d): y=-3x+4
Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}\dfrac{5}{2}x^2+3x-4=0\\y=-3x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x^2+6x-8=0\\y=-3x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x^2+10x-4x-8=0\\y=-3x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x+2\right)\left(5x-4\right)=0\\y=-3x+4\end{matrix}\right.\)
\(\Leftrightarrow\left(x,y\right)\in\left\{\left(-2;10\right);\left(\dfrac{4}{5};\dfrac{8}{5}\right)\right\}\)
a, Thay x = 1 vào (d) : y = 2x <=> y = 2
Vậy (d) đi qua A(1;2)
(P) cắt (d) tại A(1;2) <=> a = 2
c, Hoành độ giao điểm (P) ; (d) tm pt
\(2x^2-2x=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)
-> Thay x = 0 vào ta được y = 0
Vậy (P) cắt điểm thứ 2 là B(0;0)