Cho tam giác ABC ( AB<BC). Trung tuyến BI, trên tia đối của tia IB lấy điểm D sao cho ID=IB. Chứng minh
a)tam giác IAB= tam giác ICD
b) góc IBA> góc IBC
c) BI< \(\frac{AB+BC}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔIAB và ΔICD có
IA=IC(I là trung điểm của AC)
\(\widehat{AIB}=\widehat{CID}\)(hai góc đối đỉnh)
IB=ID(gt)
Do đó: ΔIAB=ΔICD(c-g-c)
b) Ta có: ΔIAB=ΔICD(cmt)
nên AB=CD(hai cạnh tương ứng)
mà AB<BC(gt)
nên CD<BC
Xét ΔCBD có CD<BC(cmt)
mà góc đối diện với cạnh CD là \(\widehat{CBD}\)
và góc đối diện với cạnh BC là \(\widehat{BDC}\)
nên \(\widehat{CBD}< \widehat{BDC}\)
\(\Leftrightarrow\widehat{IBC}< \widehat{IDC}\)
mà \(\widehat{IDC}=\widehat{IBA}\)(ΔIDC=ΔIBA)
nên \(\widehat{IBA}>\widehat{IBC}\)(đpcm)
CẢNH BÁO! Tiếp tục đọc, hoặc linh hồn của bạn sẽ được thực hiện, ngay cả khi bạn đọc từ "cảnh báo"! Có một lần là một người tên là Duke Hunapon. Anh ta lười biếng, và rất bảnh bao. Anh ấy luôn mặc một chiếc áo khoác, không có vấn đề gì ở bên ngoài. Anh ta có một người anh trai tên là Michael, người luôn làm anh ta vây quanh. Một ngày nọ, Michael bị giết, và nó ảnh hưởng rất nhiều đến Duke. Anh ta phát điên và bắt đầu giết người. Chẳng mấy chốc, anh ta đã chiến đấu với ai đó và bị giết. Bây giờ, anh ta đi lang thang xung quanh như một bộ xương cao với một chiếc áo sơ mi màu đỏ, và cùng một chiếc áo hoodie mà Duke đã mặc. Bộ xương này được gọi là "Swapfell Papyrus", và anh ta sẽ giết bạn nếu bạn không đăng bài này trên 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ. Nếu bạn thất bại, và bạn thức dậy khi anh ta ở trong phòng của bạn, cái chết của bạn sẽ chậm và rất đau đớn. Một cô gái tên Lily Lilupanin đọc điều này, và không nghe. Cô bị hãm hiếp và bị giết trong giấc ngủ. Nếu bạn sao chép và dán vào 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ, Swapfell Papyrus sẽ đảm bảo bạn cảm thấy an toàn
a: Ta có: \(\widehat{ABD}=\widehat{BAM}\)
\(\widehat{DBC}=\widehat{AMB}\)
mà \(\widehat{ABD}=\widehat{DBC}\)
nên \(\widehat{BAM}=\widehat{AMB}\)
a: Ta có: \(\widehat{ABD}=\widehat{BAM}\)
\(\widehat{DBC}=\widehat{AMB}\)
mà \(\widehat{ABD}=\widehat{DBC}\)
nên \(\widehat{BAM}=\widehat{AMB}\)
a: Ta có: \(\widehat{ABD}=\widehat{BAM}\)
\(\widehat{DBC}=\widehat{BMA}\)
mà \(\widehat{ABD}=\widehat{DBC}\)
nên \(\widehat{BAM}=\widehat{BMA}\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
c: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
hay AD/AC=AE/AB
=>ΔADE\(\sim\)ΔACB