Tìm giá trị lớn nhất, nhỏ nhất của biểu thức:
B=\(x^2-4x+5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(B=2\left(x^2+4x+4\right)+1=2\left(x+2\right)^2+1\ge1\)
\(B_{min}=1\) khi \(x=-2\)
\(C=4x^2y^2+12xy+9+6=\left(2xy+3\right)^2+6\ge6\)
\(C_{min}=6\) khi \(xy=-\dfrac{3}{2}\)
Ta có: \(B=2x^2+8x+9\)
\(=2\left(x^2+4x+\dfrac{9}{2}\right)\)
\(=2\left(x^2+4x+4+\dfrac{1}{2}\right)\)
\(=2\left(x+2\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi x=-2
Vậy: \(B_{min}=1\) khi x=-2
\(a,f\left(x\right)⋮g\left(x\right)\\ \Leftrightarrow\dfrac{-x^4+2x^2-3x+5}{x-1}\in Z\\ \Leftrightarrow\dfrac{-x^4+x^3-x^3+x^2+x^2-x-2x+2+3}{x-1}\in Z\\ \Leftrightarrow\dfrac{-x^3\left(x-1\right)-x^2\left(x-1\right)+x\left(x-1\right)-2\left(x-1\right)+3}{x-1}\in Z\\ \Leftrightarrow-x^3-x^2+x-2+\dfrac{3}{x-1}\in Z\\ \Leftrightarrow3⋮x-1\\ \Leftrightarrow x-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{-2;0;2;4\right\}\\ Mà.x< 0\\ \Leftrightarrow x=-2\\ b,B=\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4+4y^2-2024\\ B=\left(x-y\right)^2+4\left(x-y\right)+4+4y^2-2024\\ B=\left(x-y-2\right)^2+4y^2-2024\ge-2024\\ B_{min}=-2024\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
Bài 1:
Ta có |x-8| > 0 với mọi x
=>A=37-|x-8| > 37 với mọi x
Vậy GTLN của A=37 với x-8=0 =>x=8
Bài 2 tương tự nhé
Học tốt :))
\(A=\left(x-1\right)^2+8\ge8\\ A_{min}=8\Leftrightarrow x=1\\ B=\left(x+3\right)^2-12\ge-12\\ B_{min}=-12\Leftrightarrow x=-3\\ C=x^2-4x+3+9=\left(x-2\right)^2+8\ge8\\ C_{min}=8\Leftrightarrow x=2\\ E=-\left(x+2\right)^2+11\le11\\ E_{max}=11\Leftrightarrow x=-2\\ F=9-4x^2\le9\\ F_{max}=9\Leftrightarrow x=0\)
$P = \dfrac{4x+1}{x^2+5}
\\ \Leftrightarrow (x^2+5)P=4x+1 \\
\Leftrightarrow Px^2+5P = 4x+1 \\
\Leftrightarrow x^2P-4x+5P-1=0 $
$\rightarrow PT có nghiệm khi \Delta' \ge 0 \\
\Leftrightarrow (-2)^2 -(5P-1)P \ge 0 \\
\Leftrightarrow -\dfrac{4}{5} <= P <= 1 \\
\Leftrightarrow GTLN của P là 1 khi x=.. $
\(B=\left(2x-1\right)^2+\left(x+2\right)^2\)
\(=4x^2-4x+1+x^2+4x+4\)
\(=5x^2+5\)
Ta thấy \(5x^2\ge0\forall x\)
\(\Rightarrow5x^2+5\ge5\)
\(\Rightarrow B\ge5\)
Dấu "=" xảy ra khi \(x=0\)
...
\(B=4x^2-4x+1+x^2+4x+4\)
\(=5x^2+5\ge5\)
Dấu "=" xảy ra <=> x^2 = 0 <=> x = 0
GTNN của B là 5 khi x = 0
`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`
GTNN = x^2-4x+4+1
=(x^2-4x+4)+1
=(x-2)^2+1 >= 1
Vậy GNNN là 1