Tinh tong
a, 1.2.3+2.3.4+.......+999.1000.1001
b,\(1^2+2^2+......+999^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1.2.3 + 2.3.4 +..+ (n-1).n.(n+1)
4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +..+ (n-1)n(n+1).4
ghi dọc cho dễ nhìn:
(k-1)k(k+1).4 = (k-1)k(k+1)[(k+2) - (k-2)] = (k-1)k(k+1)(k+2) - (k-2)(k-1)k(k+1)
ad cho k chạy từ 2 đến n ta có:
1.2.3.4 = 1.2.3.4
2.3.4.4 = 2.3.4.5 - 1.2.3.4
3.4.5.4 = 3.4.5.6 - 2.3.4.5
(n-2)(n-1)n.4 = (n-2)(n-1)n(n+1) - (n-3)(n-2)(n-1)n
(n-1)n(n+1).4 = (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1)
+ + cộng lại vế theo vế + + (chú ý cơ chế rút gọn)
4S = (n-1)n(n+1)(n+2)
=> S = (n-1)n(n+1)(n+2)/4
Tick nha Hoàng Thái
A = 1.2.3 + 2.3.4 + ....+ 48.49.50
=> 4A = 1.2.3.4 + 2.3.4.(5-1) + ...+ 48.49.50.(51-17)
= 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + .....+ 48.49.50.51 - 47.48.49.50
= 48.49.50.51
=> A = 48.49.50.51:4 = 12.49.50.51
bài b) làm tương tự nha
A) \(A=1+4+4^2+4^3+...+4^{26}\)
\(\Rightarrow4A=4+4^2+4^3+4^4+...+4^{27}\)
\(\Rightarrow4A-A=4^{27}-1\)
\(3A=4^{27}-1\)
\(A=\frac{4^{27}-1}{3}\)
B) \(B=3+3^3+3^5+3^7+...+3^{21}\)
\(\Rightarrow3^2B=3^3+3^5+3^7+3^9+...+3^{23}\)
\(\Rightarrow3^2B-B=3^{23}-3\)
\(8B=3^{23}-3\)
\(B=\frac{3^{23}-3}{8}\)
C) \(M=1.2+2.3+3.4+...+49.50\)
\(\Rightarrow3M=1.2.3+2.3.3+3.4.3+...+49.50.3\)
\(3M=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+49.50.\left(51-48\right)\)
\(3M=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+49.50.51-48.49.50\)
\(3M=\left(1.2.3+2.3.4+3.4.5+...+49.50.51\right)-\left(1.2.3+3.4.5+...+48.49.50\right)\)
\(3M=49.50.51\)
\(M=\left(49.50.51\right):3\)
\(M=41650\)
D) \(N=1.2.3+2.3.4+3.4.5+...+49.50.51\)
\(\Rightarrow4N=1.2.3.4+2.3.4.4+3.4.5.4+...+49.50.51.4\)
\(4N=1.2.3.\left(4-0\right)+2.3.4\left(5-1\right)+3.4.5.\left(6-2\right)+...+49.50.51.\left(52-48\right)\)
RỒI BN LÀM GIỐNG NHƯ MK Ở PHẦN C THÌ NÓ SẼ RA!
CHÚC BN HỌC TỐT!!!!
a,
=(10-1)+(10^2 - 1)+...+(10^10 - 1)
=(10 + 10^2 + 10^3 +....+ 10^10) - 10
=10^2+10^3+10^4+....+10^10
=11111111100
b,
1/21+1/28 ko bằng 2/9
a. Đặt a=1.2.3+2.3.4+3.4.5+....+999.1000.1001
=> 4A=1.2.3.4+2,3,4,4+3.4.5.4+....+999.1000.1001.4
=>4A=1.2.3.(4-0)+2.3.4.(5-1)+3.4.5.(6-2)+....+999.1000.1001.(1002-998)
=>4A=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...+999.1000.1001.1002-998.999.1000.1001
=>4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+....+999.1000.1001.1002-998.999.1000.1001
=>4A=999.1000.1001.1002
=>A=\(\frac{999.1000.1001.1002}{4}\)
Vậy A=...............