tìm số cặp số (x;y) thỏa mãn (x2+2)(y4+6)=10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x-5\right)⋮\left(x+2\right)\)
\(\Rightarrow3.\left(x+2\right)-11⋮\left(x+2\right)\)
Vì \(3.\left(x+2\right)⋮\left(x+2\right)\)
\(\Rightarrow11⋮\left(x+2\right)\)
\(\Rightarrow\left(x+2\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Tự lập bảng :) T lười qá
x^3-y^2=xy
=>(1) x(x^2-y)=y^2
x,y là các số tự nhiên => x^2-y là ước của y^2 => x^2 là ước của y^2 => x là ước của y => y=ax
=>(2) x^3=y(x+y)
=> x^3=ax(x+ax)=x^2.a.(a+1)
=> x=a(a+1)
Vậy x là tích 2 số tự nhiên liên tiếp; x,y có 2 chữ số.
a=1 => x=2 (loại)
a=2 => x=6 (loại)
a=3 => x=12 => y=36 (chọn)
a=4 => x=20 => y=80 (chọn)
a=5 => x=30 => y=150 (loại)
a>=5 thì y>100 => (loại)
Vậy (x,y)=(12,36) hoặc (x,y)=(20,80)
\(Giải.\)
\(x^2-2y^2=1\Leftrightarrow x^2-1=2y^2\Leftrightarrow\left(x+1\right)\left(x-1\right)=2y^2\left(chẵn\right)\)
Dễ thấy: x+1-(x-1)=2 nên 2 số trên cùng chẵn hoặc cùng lẻ=> 2 số trên cùng chẵn
=> 2y2 chia hết cho 4=>y2 chia hết cho 2
=> y chẵn =>y=2=>x2-8=1=>x=3 (thỏa mãn)
Vậy chỉ có duy nhất 1 cặp: (x,y)=(3;2) thỏa mãn
Dễ thấy: x+1-(x-1)=2 nên 2 số trên cùng chẵn hoặc cùng lẻ=> 2 số trên cùng chẵn
=> 2y2 chia hết cho 4=>y2 chia hết cho 2
=> y chẵn =>y=2=>x2-8=1=>x=3 (thỏa mãn)
Vậy chỉ có duy nhất 1 cặp: (x,y)=(3;2) thỏa mãn
Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)
Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)
Vậy (x;y) = (3;3)
x + y + xy = 3
x + y + xy + 1 = 4
x(y+1) + (y+1) = 4
(x+1)(y+1) = 4
x + 1 = 4 ; y + 1 = 1 => (x;y) = (3;0)
x + 1 = -4 ; y + 1 = - 1 => (x;y) = (-5 ; -2)
x + 1 = 1 ; y + 1 = 4 > (x;y) = (0;3)
x + 1 = -1 ; y + 1 = -4 => (x;y)= (-2 ; -5)
x + 1 = 2 ; y + 1 = 2 => (x;y) = (1;1)
x + 1 = -2 ; y + 1 = -2 => (x;y) = (-2 ; -2)
Vậy có 6 cặp số nguyên (x;y)
\(P=\frac{x-2}{x+1}=\frac{x+1}{x+1}-\frac{3}{x+1}=1-\frac{3}{x+1}\)
P nguyên <=>3 chia hết cho x+1 <=>x+1 là Ư(3)
Mà Ư(3)={+-1;+-3}
Ta có bảng sau:
x+1 | 1 | -1 | 3 | -3 |
x | 0 | -2 | 2 | -4 |
Vậy x={-4;-2;0;2} thì P nguyên
p nguyên <=> x-2=x+1-3 chia hết cho x+1 => 3 chia hết cho x+1 => x+1 thuộc Ư(3) =>x+1 thuộc {-3;-1;1;3} <=> x thuộc {-4;-2;0;2}
nhận xét: x2 \(\ge\) 0 => x2 + 2 \(\ge\) 2
y4 \(\ge\) 0 => y4 + 6 \(\ge\) 6
=> (x2+2)(y4+6) \(\ge\) 2.6 = 12 > 10
Vậy không giá trị x; y thoả mãn (x2+2)(y4+6) = 10