2^x+1.3^x-6^x=216
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{x+1}.3^x-6^x=216\)
\(\Leftrightarrow2^x2.3^x-2^x.3^x=216\)
\(\Leftrightarrow\left(2.3\right)^x\left(2-1\right)=216\)
\(\Leftrightarrow6^x=216\)
\(\Leftrightarrow6^x=6^3\)
\(\Leftrightarrow x=3\)
\(2^{x+1}.3^x-6^x=216\)
\(=>2^x.2.3^x-6^x=216\)
\(=>\left(2.3\right)^x.2-6^x=216\)
\(=>6^x.2-6^x=216\)
\(=>6^x.\left(2-1\right)=216\)
\(=>6^x.1=216\)
\(=>6^x=216:1=216\)
\(=>6^x=6^3\)
\(=>x=3\)
Vậy...
\(#NqHahh\)
\(318-5\left(x-64\right)=103\)
\(\Rightarrow5\left(x-64\right)=318-103\)
\(\Rightarrow5\left(x-64\right)=215\)
\(\Rightarrow x-64=43\)
\(\Rightarrow x=43+64\)
\(\Rightarrow x=107\)
_____________
\(4^x\cdot5+216=296\)
\(\Rightarrow4^x\cdot5=296-216\)
\(\Rightarrow4^x\cdot5-80\)
\(\Rightarrow4^x=16\)
\(\Rightarrow4^x=4^2\)
\(\Rightarrow x=2\)
___________
\(376-6^x:3=364\)
\(\Rightarrow6^x:3=376-364\)
\(\Rightarrow6^x:3=12\)
\(\Rightarrow6^x=36\)
\(\Rightarrow6^x=6^2\)
\(\Rightarrow x=2\)
___________
\(\left(4x-1\right)^2=121\)
\(\Rightarrow\left(4x-1\right)^2=11^2\)
\(\Rightarrow\left[{}\begin{matrix}4x-1=11\\4x-1=-11\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4x=12\\4x=-10\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)
a) \(4^n=4096\Rightarrow4^n=4^6\Rightarrow n=6\)
b) \(5^n=15625\Rightarrow5^n=5^6\Rightarrow n=6\)
c) \(6^{n+3}=216\Rightarrow6^{n+3}=6^3\Rightarrow n+3=3\Rightarrow n=0\)
d) \(x^2=x^3\Rightarrow x^3-x^2=0\Rightarrow x^2\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
e) \(3^{x-1}=27\Rightarrow3^{x-1}=3^3\Rightarrow x-1=3\Rightarrow x=4\)
f) \(3^{x+1}=9\Rightarrow3^{x+1}=3^2\Rightarrow x+1=2\Rightarrow x=1\)
g) \(6^{x+1}=36\Rightarrow6^{x+1}=6^2\Rightarrow x+1=2\Rightarrow x=1\)
h) \(3^{2x+1}=27\Rightarrow3^{2x+1}=3^3\Rightarrow2x+1=3\Rightarrow2x=2\Rightarrow x=1\)
i) \(x^{50}=x\Rightarrow x^{50}-x=0\Rightarrow x\left(x^{49}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^{49}-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x^{49}=1=1^{49}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
4n = 4096
4n = 212
n = 12
5n = 15625
5n = 56
n = 6
6n+3 = 216
6n+3 = 23.33
6n+3 = 63
n + 3 = 3
a) \(2^{x+1}\times3^x-6^x=216\)
\(2^{x+1}\times3^x-2^x\times3^x=216\)
\(2^x\times3^x\times\left(2^1-1\right)=216\)
\(2^x\times3^x=216\)
\(6^x=6^3\Rightarrow x=3\)
b) \(9^x+3^x=702\)
\(3^x\times3^x+3^x=702\)
\(3^x\times\left(3^x+1\right)=26\times27\)
=> 3x = 26 => x thuộc tập hợp rỗng
\(3^x\times\left(3^2-1\right)=216\)
\(3^x\times\left(9-1\right)=216\)
\(3^x\times8=216\)
\(3^x=\frac{216}{8}\)
\(3^x=27\)
\(3^x=3^3\)
\(x=3\)
\(6^x=8\times3^x\)
\(\frac{6^x}{3^x}=8\)
\(\left(\frac{6}{3}\right)^x=2^3\)
\(2^x=2^3\)
\(x=3\)
\(\left(3x+1\right)^3=1\)
\(3x+1=1\)
\(3x=1-1\)
\(3x=0\)
\(x=0\)