K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2021

Lời giải:

Thực hiện phép biến đổi tương đương:

Ta có: a3+b3+abcab(a+b+c)a3+b3+abc≥ab(a+b+c)

a3+b3+abcab(a+b+c)0⇔a3+b3+abc−ab(a+b+c)≥0

a3+b3ab(a+b)0⇔a3+b3−ab(a+b)≥0

a2(ab)b2(ab)0⇔a2(a−b)−b2(a−b)≥0

(a2b2)(ab)0⇔(a2−b2)(a−b)≥0

(ab)2(a+b)0⇔(a−b)2(a+b)≥0 (luôn đúng với mọi $a,b$ dương )

Do đó ta có đpcm.

Dấu bằng xảy ra khi a=b

tk cho mk nha

10 tháng 4 2021

ĐK : a,b dương

a3 + b3 ≥ ab( a + b )

<=> ( a + b )( a- ab + b2 ) - ab( a + b ) ≥ 0

<=> ( a + b )( a - b )2 ≥ 0 đúng do a,b dương

Vậy ta có đpcm. Đẳng thức xảy ra <=> a=b

21 tháng 5 2016

biết là sử dụng BĐT này rùi thì áp dụng mà giải hỏi làm chi :D

21 tháng 5 2016

Cái đấy làgiáo viên mình gợi ý =,=

Câu 1: 

\(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ab-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

\(=\dfrac{\left(a+b+c\right)\cdot\left(a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2\right)}{2}\)

\(=\dfrac{\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]}{2}>=0\)

=>\(a^3+b^3+c^3>=3abc\)

 

8 tháng 10 2016

Ta có a3 + b3 - ab(a + b) \(\ge0\)

\(\Leftrightarrow\)(a + b)(a2 - ab + b2 - ab)\(\ge0\)

\(\Leftrightarrow\)(a + b)(a - b)2 \(\ge0\)(đúng)

Vậy cái ban đầu là đúng

7 tháng 10 2016

giúp cái -_-

14 tháng 10 2015

a/ Chuyển vế ta có: 

a+ b- ab(a-b) = a2(a-b) - b2(a-b) = (a+b)(a-b)2 >= 0

Suy ra đpcm

b/ a2/2 + b2/2 >= ab

a2/2 + 1/2 >= a

b2/2 +1/2 >= b

Cộng theo vế 3 BĐT ta có đpcm