Phân tích đa thành nhân tử
\(a>x^3-3\times x^2-4x+12\)
\(b>x^4+4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(=x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
\(x-4\)
\(\left(\sqrt{2}\right)^2-4\)
\(=\left(\sqrt{2}-2\right)\left(\sqrt{2}+2\right)\)
#)Giải :
\(x^3-2x-4\)
\(=x^3+2x^2-2x^2+2x-4x-4\)
\(=x^3+2x^2+2x-2x^2-4x-4\)
\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
\(x^4+2x^3+5x^2+4x-12\)
\(=x^4+x^3+6x^2+x^3+x^2+6x-2x^2-2x-12\)
\(=x^2\left(x^2+x+6\right)+x\left(x^2+x+6\right)-2\left(x^2+x+6\right)\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)
Câu 1.
Đoán được nghiệm là 2.Ta giải như sau:
\(x^3-2x-4\)
\(=x^3-2x^2+2x^2-4x+2x-4\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
a) x2 + 4x + 3
= x2 + 3x + x +3
= ( x2 + 3 ) + ( x + 3 )
= x ( x + 3 ) + ( x + 3 )
= ( x + 3 ) ( x + 1 )
b) 4x2 - 4x - 3
= 4x2 + 2x - 6x - 3
= ( 4x2 + 2x ) - ( 6x + 3 )
= 2x ( 2x + 1 ) - 3 ( 2x + 1 )
= ( 2x + 1 )( 2x - 3 )
c) x2 - x - 12
= x2 + 3x - 4x - 12
= ( x2 + 3x ) - ( 4x + 12 )
= x ( x + 3 ) - 4 ( x + 3 )
= ( x + 3 ) ( x - 4 )
d) 4x4 - 4x2y2 - 8y4
= 4 ( x4 - x2y2 - 2y4 )
Hk tốt
a) `x^4+2x^3-4x-4`
`=(x^4-4)+(2x^3-4x)`
`=(x^2-2)(x^2+2)+2x(x^2-2)`
`=(x^2-2)(x^2+2+2x)`
b) `x^3-4x^2+12x-27`
`=(x^3-27)-(4x^2-12x)`
`=(x-3)(x^2+3x+9)-4x(x-3)`
`=(x-3)(x^2+3x+9-4x)`
`=(x-3)(x^2-x+9)`
c) `xy-4y-5x+20`
`=y(x-4)-5(x-4)`
`=(y-5)(x-4)`
a) Ta có: \(x^4+2x^3-4x-4\)
\(=\left(x^4-4\right)+2x^3-4x\)
\(=\left(x^2-2\right)\left(x^2+2\right)+2x\left(x^2-2\right)\)
\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)
b) Ta có: \(x^3-4x^2+12x-27\)
\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\cdot\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
c) Ta có: \(xy-4y-5x+20\)
\(=y\left(x-4\right)-5\left(x-4\right)\)
\(=\left(x-4\right)\left(y-5\right)\)
\(x^2-3xy-40y^2\)
\(=x^2+5xy-8xy-40y^2\)
\(=x\left(x+5y\right)-8y\left(x+5y\right)\)
\(=\left(x+5y\right)\left(x-8y\right)\)
a) 10x + 15y = 5(2x + 3y)
b) x2 - 2xy - 4 + y2
= (x2 - 2xy + y2) - 4
= (x - y)2 - 22
= (x - y + 2)(x - y - 2)
c) x(x + y) - 3x - 3y
= x(x + y) -3(x + y)
= (x - 3)(x + y)
a, \(10x+15y=5\left(2x+3y\right)\)
b, \(x^2-2xy-4+y^2=\left(x-y\right)^2-4=\left(x-y-2\right)\left(x-y+2\right)\)
c, \(x\left(x+y\right)-3x-3y=x\left(x+y\right)-3\left(x+y\right)=\left(x-3\right)\left(x+y\right)\)
\(a,x^3-3.x^2-4x+12\)
\(=\left(x^3-3x^2\right)-\left(4x-12\right)\)
\(=x^2.\left(x-3\right)-4.\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-4\right)\)
\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
\(a,x^3-3x^2-4x+12\)
\(=\left(x^3-3x^2\right)-\left(4x-12\right)\)
\(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-4\right)\)
\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)